PH575 Spring 2019 Lecture #17/18 Free electron metals ...

12
PH575 Spring 2019 Lecture #17/18 Free electron metals: Optical response, Kittel Ch. 14 pp. 152-156; 395-403 0 20 40 60 80 100 1 1.5 2 2.5 3 3.5 4 4.5 Reflection, Transmission (%) Wavelength (μm) IWO, R ITO, R ITO, T IWO, T

Transcript of PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Page 1: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

PH575 Spring 2019 Lecture #17/18 Free electron metals: Optical response, Kittel Ch. 14 pp. 152-156; 395-403

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5

Refle

ctio

n, T

rans

miss

ion

(%)

Wavelength (µm)

IWO, R

ITO, R

ITO, T

IWO, T

Page 2: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Metal Vacuum

ω <ω pNo propagation; reflection

ω >ω p Transparent

AIR METAL

PLASMA frequency separates reflection (low frequency) from transparency (high frequency)

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5

Refle

ctio

n, T

rans

miss

ion

(%)

Wavelength (µm)

IWO, R

ITO, R

ITO, T

IWO, T

Page 3: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

https://physics.stackexchange.com/questions/72368/why-are-most-metals-gray-silver

Page 4: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

http://www.pueschner.com/engl/images/phys_basics/diagram2.gif

Frequency dependence of the dielectric properties of water

Dielectric function ε of an electron gas: In intro physics, ε is the (real) factor measuring field enhancement in a dc capacitor. Related to polarizability of a material. In general, ε is frequency-dependent, because charges respond differently to different frequency electric fields. It is also complex because there is an in-phase and an out-of-phase response.

Page 5: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Material's response to electromagnetic radiation with frequency ω and wave vector k = 2π/ λ. Long wavelength response (spatial electric field of light wave changes little over the mfp of an electron). Visible light λ ≈ 10-1000 nm; mfp Cu RT ≈ 80 nm. Free mobile electrons against fixed background of positive charge (total system is neutral).

Dielectric function of the free electron gas (i.e. electrons in a metal)

!D = ε0

!E +!P

!D = ε0

!E + ε0χ

!E ≡ ε relε0

!E

ε rel = 1+ χ( )

Permittivity of free space 8.8x10-12 F/m χ: electric susceptibility

Permittivity relative to free space

Ε: electric field; P: dipole moment /volume

Page 6: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Dielectric function of the (undamped) electron gas:

Applied field: !E =!E0e

iωt Response: !x = !x0eiωt

Newton:

F = ma⇒ q

E = m d 2 x

dt 2

−e!E0e

iωt = −mω 2 !x0eiωt

x = e

E

mω 2

Polarization density: P = −nex = − ne2

mω 2

ε0χ

E

ε rel = 1+ χ( )

ε rel ω( ) = 1− ne2

ε0mω2

Page 7: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Dielectric function of the electron gas:

εrel ω( ) = 1− ne2

ε0m *ω2

εrel ω( ) = 1−ω p2

ω 2 ωp is called “plasma frequency”

Magnitude of ωp?

ω p2 =

ne2

ε0m *

fp =12π

ne2

ε0m *= ?

Ep = ω p = hfp = ?

λp =cfp= ?

Page 8: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

εr - relative permittivity n – refractive index (can be complex, real or imag)

1µ0ε0

∂2E

∂t 2= ∇2 E⇒

E =E0e

iω t− xc

⎛⎝⎜

⎞⎠⎟Maxwell, free space:

1µ0

∂2D

∂t 2= ∇2 E⇒

E =E0e

iω t−ncxc

⎛⎝⎜

⎞⎠⎟Maxwell, medium:

c = ωk= 1

µ0ε0

v = ωk= 1

µ0ε0ε r= c

ε r= cnc

velocity:

velocity:

Page 9: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

E = E0ei ωt−kx( ) = E0e

iω t−ncxc

⎛⎝⎜

⎞⎠⎟ = E0e

iω t−nxc

⎛⎝⎜

⎞⎠⎟e

− ωκc

⎛⎝⎜

⎞⎠⎟ x

I = I0e−α x ⇒α = 2ωκ

c= 4πκ

λε = dielectric constant

n = index of refraction

α = absorption coefficient

κ  = extinction coefficient

R = reflection coefficient

Optical constants

ε = nc2

ε = ε1 − iε2; nc = nr + ini = n − iκε1 = n

2 −κ 2; ε2 = 2nκ

R = nc −1nc +1

2

=n −1( )2 +κ 2

n +1( )2 +κ 2

k: wave vector v=ω/k=c/nc

E, electric field

Page 10: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

εrel ω( ) = 1−ω p2

ω 2

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5

Refle

ctio

n, T

rans

miss

ion

(%)

Wavelength (µm)

IWO, R

ITO, R

ITO, T

IWO, T

"Transparent conductor" In2O3. Arrows show plasma wavelengths for two different carrier concentrations. (Which one is higher?)

ω > ωp, εrel > 0; n real - propagating wave ω < ωp, εrel < 0; n imag. - damped wave

E = E0eiω t−ncx

c#$%

&'( = E0e

iω t−nxc

#$%

&'(e

−ωκc

#$%

&'(x

Page 11: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Metal Vacuum

ω <ω pNo propagation; reflection

ω >ω p Transparent

AIR METAL

Page 12: PH575 Spring 2019 Lecture #17/18 Free electron metals ...

Dielectric function of the electron gas: doped semiconductors

The “background” dielectric constant is the one associated with the positive cores.

ε rel ω( ) = 1+ εbound ω( )− ne2

ε0m*ω2

ε rel ω( ) = ε r ,opt −

ω p2

ω 2 = ε rel ,opt 1−ω p2

ω 2

⎣⎢

⎦⎥ = ε rel ,opt 1−

ne2

ε rel ,optε0m*ω2

⎣⎢

⎦⎥

Till now only the free electron part, but in semiconductors, dielectrics, molecuar crystals, also other bound charge

D = ε0

ξ +Pother +

Pfree

D = ε0

ξ +Pother − ε0

ne2

ε0m*ω2

ξ