Perhitungan Jaw Crusher

50

description

perhitungan jaw crusher

Transcript of Perhitungan Jaw Crusher

gape set. set;Singletoggletype Double toggle type x =u Cos+ ( l-v) Si n + a -rsi n y =u Si n + ( l-v) Cos + b -rcos clc clear n=1; l=1085; a=45.3; r=12; u=0; b=815.7; i=1; theta=[20.16 19.84 19.37 18.90 18.55 18.41 18.52 18.84 19.29 19.74 20.10 20.25 20.16]; for psi=0:30:360 n=1; for v=85:100:1085 x(i,n)=u*cos(theta(i)*pi/ 180)+(l-v)*sin(theta(i)*pi/ 180)+a-r*sin(psi*pi/ 180); y(i,n)=u*sin(theta(i)*pi/ 180)-(l-v)*cos(theta(i)*pi/ 180)+b-r*cos(psi*pi/ 180); n=n+1; end i=i+1; end psinew=0:30:360; figure(1) plot(x(1,:),y(1,:)); hold on plot(x(4,:),y(4,:)); hold on plot(x(7,:),y(7,:)); hold on plot(x(10,:),y(10,:)); figure(2) for i=1:1:11 plot(psinew,x(:,i)) hold on end figure(3) plot(psinew,y(:,5)) hold on plot(psinew,x(:,5)) figure(4) plot(y(:,5),x(:,5)) x; y; 1.Ever y poi nton t he movi ng j aw f ol l ows an el l i pt i calpat h2.Whent hemovest owar dst hef i xedj aw;i t goesver t i cal l ydownandi n t he r et ur n st r oke i tmoves ver t i cal l y up.By di f f er ent i at i ng t he posi t i on we gett he equat i on t o cal cul at e t he hor i zont alandver t i cal vel oci t i es.Expr essi onsf or hor i zont al andver t i cal vel oci t i esar e gi ven bel ow:Vx= ( l-v) Cos ( d /d) -rcos -u Si n ( d/ d) Vy= ( l-v) Si n ( d /d) + rSi n + u Cos ( d /d) cl c cl earn=1; l =1085; a=45.3; r =12; u=0; b=815.7; i =1; t het a=[ 20.1619.8419.3718.9018.5518.4118.5218.8419.2919.7420.10 20.25 20.16] ; psi ( 1) =0; m=0; f ori =1:1:13 n=1; f orv=85:100:1085 vx( i ,n) =( l -v) *cos( t het a( i ) *pi / 180) *m-r *cos( psi ( i ) *pi / 180) -u*si n( t het a( i ) *pi / 180) *m; vy( i ,n) =( l -v) *si n( t het a( i ) *pi / 180) *m+r *si n( psi ( i ) *pi / 180) +u*cos( t het a( i ) *pi / 180) *m; n=n+1; end i f ( i 0 ( Equation 3.3) 1 -2= - {(1)2 Cos Cos }/(Sin - 1 Cos ) ( Equation 3.4 ) It i s inconsistent to the assumption. Now, Let us consider slide takes place between the particle and the fixed jaw plate.f2 = 1 N2 and 2 = (1 Sin +Cos ) /(Sin + 1 Cos )( Equation 3.5 ) 1 -2= - {(1)2 Cos + Cos }/(Si n +1 Cos )> 0 ( Equation 3.6 )Which is rational.Hence from the above analysisfor fi gur e3.3(b) it is proved that condition for the particle to slip againstthefixedjawplateismucheasierthanwiththemovingjawplate.Underfi gur e3.3(b) condition thesli de between the particle and thefixedplateisalsounavoidable. Soi n ei t her casethe chance of the particle to slide with the fixed jaw is more as compared to the moving jaw. In fact,due to the verticalmotion and the irregular geometry of particles, a classification process before the particle fracturemayexist duri ng close process,in which the particle position adjustment takes place. 3.3 Wearanal ysi s Squeezing and sliding arethe two principal factors affectingthejawplateswear. High manganese steel are widely used as the liner for moving jaw as it possessesexcellent work hardeni ng character. Byscanni ng theworn j awplatesunder theelectronmicroscope,itisfoundthatthe sliding isthe main factor to thej awplates wear andthesufficient squeezing can even relieve the j aw plate wear [ 1] .Squeezingplaysthemainroleat the top of the jaw crusher as the slidi ng is smallat this area ,thewearinthiszoneis small.As we move down the crusher, the probability to slip increases and the wear becomes more serious. While moving along the length , atthemiddlelowerpartof thecrusher,theratioof the verticaldistancetothehorizontal strokereachesthemaxi malvalue resultingmaximum wear inthisregion.Very few particles come in contact with the edge parts, so t he war e att he l owerpar t s i s consi der abl y smal l . Forthe samej awcrusher,theslide between the particle and the moving j aw plate, is more compared to the moving j aw plate wand hence the wear is dominant in fixed jaw relative to its stationary counterpart. 1-2)/ Maximum fluctuation of energy = maximum KE Minimum KE = I( 1)2 I (2)2 = I2Cs= 2 E Cs t Centrifugal force on this element = dF= dm. 2. R = 2. 2. 2. 2. t 2. t = 2 2 The maximum bending moment , M = k l2 / 12= 2( b = M/Z =6. 2( =t +b 4.3.2 Torque v/ s Crank angle graph clc clear n=1; l=1085; a=45.3; r=12; u=0; b=815.7; i=1; theta=[20.16 19.84 19.37 18.90 18.55 18.41 18.52 18.84 19.29 19.74 20.10 20.25 20.16]; psi(1)=0; m(1)=0; dm(1)=0; for i=1:1:13 n=1; for v=85:100:1085 ax(i,n)=((l-v)*cos(theta(i)*pi/ 180)-u*sin(theta(i)*pi/ 180))*dm(i)-m(i)^2*((l-v)*sin(theta(i)*pi/ 180)+u*cos(theta(i)*pi/ 180))+r*sin(psi(i)*pi/ 180); ay(i,n)=((l-v)*cos(theta(i)*pi/ 180)-u*sin(theta(i)*pi/ 180))*m(i)^2+((l-v)*sin(theta(i))*pi/ 180+u*cos(theta(i)*pi/ 180))*dm(i)+r*cos(psi(i)*pi/ 180); n=n+1; end if(i