Patterning of plasmonic structures for (bio) sensing

13
1 Patterning of plasmonic structures for (bio) sensing Gonçal Badenes, Mark Kreuzer, Petru Ghenuche, Romain Quidant Biosensing in the nanoscale Confining light to the nanoscale Implementing a nanostructured biosensor Fabrication Characterisation Enhancing light-matter interaction

Transcript of Patterning of plasmonic structures for (bio) sensing

Page 1: Patterning of plasmonic structures for (bio) sensing

1

Patterning of plasmonic structures for (bio) sensing

Gonçal Badenes, Mark Kreuzer, Petru Ghenuche, Romain Quidant

Biosensing in the nanoscale

Confining light to the nanoscaleImplementing a nanostructured

biosensorFabricationCharacterisation

Enhancing light-matter interaction

Page 2: Patterning of plasmonic structures for (bio) sensing

2

Diffraction limit

This “diffraction limit” constraint can be expressed as a particular case of Heisenberg’s uncertainty principle:

where px=hkx/2π

Light cannot be confined to linear dimensions much smaller than λ/2

(Abbe 1873)

Surface Plasmon BasicsSurface Plasmon Polariton Localised Surface Plasmon

1ε2ε

a

E0

If a << λ ⇒ dipole:(electrostatic approximation)

• Field localization and enhancement

• Strong scattering and absorption

• Highly sensitive to changes in the environment

Page 3: Patterning of plasmonic structures for (bio) sensing

3

AFM image ASNOM image

3 µm × 3 µm

Sub-wavelength patterning of the optical near field

Theory Experiment

R. Quidant et al., "Sub-wavelength patterning of the optical near-field”, Opt. Express 12, 282-287 (2004)

High sensitivitysensing

Nano-opticaltweezing

Enhanced molecularspectroscopy

Localised surface plasmons can be used for nano- optics, manipulation, sensing, switching, interconnects…

(Localised) plasmonics

Interconnects

See e.g. W.L. Barnes et al., “Surface plasmon subwavelength optics,”Nature 424, 824 - 830 (2003)

Page 4: Patterning of plasmonic structures for (bio) sensing

4

Biosensing in the nanoscale

Confining light to the nanoscaleImplementing a nanostructured

biosensorFabricationCharacterisation

Enhancing light-matter interaction

“Single particle” sensing

Local field enhancement can

be observed around “isolated”

metal nanoparticles when the plasmon

is excited

Page 5: Patterning of plasmonic structures for (bio) sensing

5

Arrangement of Gold

Drop of Liquid

Glass Slide with gold & bioreagents

Bio-modified Gold in the drop

Schematic system setup

Page 6: Patterning of plasmonic structures for (bio) sensing

6

NH

CH2CH2CH2S i

O O O

CH3CH2Si

O O O

CH3CH2Si

O O O

NH

CH2CH2CH2S i

O O O

NH

CH2CH2CH2S i

O O O

APTMS ETMS

Chemical modification of the glass surface

Selective salinization controls density of gold colloid (subsequently

bound to surface)

APTMS binds gold, ETMS doesn’t

Numerous investigation zones

Each drop can be a different solutiondifferent sensor!

RED ARROW/LINE: binding of antibody, no presence of target stanozolol

BLACK ARROW/LINE: antibody bound by target and washed away

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NHCH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NHCH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

NH

CH2CH2CH2Si

O O O

Au

glass

Nor

mal

ised

Extin

ctio

n

540 560 580Wavelength (nm)

1.0

0.9

600520

0.8

0.7

Stanozolol-BSA

Stanozolol

Anti-stanozolol

Sensor working principle

Page 7: Patterning of plasmonic structures for (bio) sensing

7

1c)

background

non-specific

specific

Do we have specific binding?

non-specific binding controls

RED ARROW/LINE: no presence of target stanozolol

BLACK ARROW/LINE: all antibody bound by target and washed away

(■) LPR

(▼) spectrophotometric

Quantifying sensor response

M. Kreuzer et al., Biosensors & Bioelectronics 21 (7) (2006)

Page 8: Patterning of plasmonic structures for (bio) sensing

8

Biosensing in the nanoscale

Confining light to the nanoscaleImplementing a nanostructured

biosensorFabricationCharacterisation

Enhancing light-matter interaction

“Single particle” sensing

Local field enhancement can

be observed around “isolated”

metal nanoparticles when the plasmon

is excited

Page 9: Patterning of plasmonic structures for (bio) sensing

9

Field enhancement:geometry and separation tuning

Previous studies (elongated structures, dimers, particles with different shapes) Field enhancement Г≈103-4

J. Kottmann and O. J. F. Martin, Optics Express, 8, 655 (2001)

E. Hao and G. C. Schatz, Chem. Phys., 120, 357 (2004)

Enhancing sensitivity: arrays

Electric near-field map Influence of the covering layer

D

Page 10: Patterning of plasmonic structures for (bio) sensing

10

S. Enoch et al., Optics Exp. 12, (2004)

Enhancing sensitivity: dimer arrays

Influence of the covering layer

P. Ghenuche et al., Opt. Lett. 30(2005)

Field enhancement:particle arrangements

Page 11: Patterning of plasmonic structures for (bio) sensing

11

Field enhancement innanoparticle chains

100nm

20nm

100nm

~20nm

Sample fabrication

Page 12: Patterning of plasmonic structures for (bio) sensing

12

Dimer arrays

Nanoparticle chains

Page 13: Patterning of plasmonic structures for (bio) sensing

13

Summary

Localised surface plasmons are ideal candidates to be used as biosensors

Random arrangements of gold nanoparticles can achieve competitive sensitivity

Sensitivity and accuracy can be significantly improved by using lithographically patterned samples

Find out more at www.icfo.es