Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform...

20
Dr. Vladislav Shteeman Page 34 Part III

Transcript of Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform...

Page 1: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 34

Part III

Page 2: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 35

Figure 45. Sketch of a transverse amplitude and phase variation of a paraxial wave (after [1]).

Page 3: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 36

Figure 46. A plane wave traveling at a small angle θ to the optic axis (after [1])

Page 4: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 37

Figure 47. Spherical waveform coming from a real point source (after [1]).

Figure 48. Gaussian-spherical wave from a complex point source (after [1], p. 658).

Page 5: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 38

Figure 49. Notation for a lowest-order gaussian beam diverging away from its waist (after [1], p. 664).

Page 6: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 39

Analogy between the lowest-order and higher order solutions for Paraxial wave equation and Schrodinger equation for Hydrogen atom

Paraxial wave equation Schrödinger equation

for resonator of cylindrical symmetry

for resonator of square symmetry

for 3D Hydrogen atom of spherical symmetry

lowest-order solution lowest-order solution lowest-order solution

higher order solutions higher order solutions higher order solutions

Page 7: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 40

Figure 50. Gaussian beam in a two-mirror resonator.

Page 8: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 41

Figure 51. Example of an optical resonator or lensguide containig arbitrary paraxial elements.

Page 9: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 42

Figure 52. Explanation to connection between the parameters of complex Gaussian beams at the input ( 1z ) and output ( 2z ) of an arbitrary ABCD system.

Page 10: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 43

Figure 53. Sketches of 2D hard aperture and 2D Gaussian aperture. ( )yxt ,~ is 2D amplitude transmission function; 0Re, 22 >∈ aa (after

Error! Reference source not found.).

Page 11: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 44

Figure 54. A gaussian aperture with transversely varying amplitude transmission ( 0Re, 22 >∈ aa ).

Page 12: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 45

Figure 55. Explanation to confined Gaussian eigenbeams of resonators / lensguides.

Figure 56. Propagation of Gaussian beam ( λ= 30 mm) in air (after [5]).

Page 13: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 46

Figure 57. Fractional power transfer of a cylindrical gaussian beam through a circular aperture.

Page 14: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 47

Figure 58. Explanation to the Rayleigh range & collimated range.

Page 15: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 48

Figure 59. A gaussian beam spreads with a constant diffraction angle in the far field.

Figure 60. Illustration to the cone, corresponding to the solid angle

e1Ω .

Page 16: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 49

Figure 61. Intensity distribution for the first 12 Hermite-Gaussian modes (TEMnm modes for n = 0,…,3 & m = 0,…,3 ) (after [5]).

Page 17: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 50

Figure 62. Intensity distribution for the first 12 Laguerre-Gaussian modes (after [5]).

Page 18: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 51

Figure 63. Illustration to analysis of a guided gaussian beam in a two-mirror cavity (Problem III - 1).

Figure 64. Explanation to the Problem III - 2.

Page 19: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 52

Figure 65. Cavity sketch (Problem III - 3).

Figure 66. Hard aperture inserted into the cavity (Problem III - 3).

Page 20: Part III - Snvhomesnvhome.net/ee-braude/introduction2eo/figures/figures 2... · Spherical waveform coming from a real point source (after [1]). Figure 48. Gaussian-spherical wave

Dr. Vladislav Shteeman Page 53

References : [1]. A. Siegman. Lasers.(University Science books 1986) [2]. A. Yariv. Quantum electronics (3rd edition, Wiley, 1989) [3]. T. Gavlin, G.Eden (ECE Illinois) Optical Resonator Modes ECE 455 Optical Electronics.

https://courses.engr.illinois.edu/ece455/Files/Galvinlectures/02_CavityModes.pdf [4]. A. Fox, T. Li, Resonant modes in a maser interferometer, Bell Labs 1961. [5]. http://en.wikipedia.org/wiki/Gaussian_beam (as of the date 18.03.2015) [6]. https://ashtriferous.wordpress.com/2012/06/19/activity-2-scilab-basics/ (as of the date

1.03.2017)