Parameter estimation class 5

29
Parameter estimation class 5 Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp 290-089

description

Parameter estimation class 5. Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp 290-089. Projective 3D Geometry. Points, lines, planes and quadrics Transformations П ∞ , ω ∞ and Ω ∞. Singular Value Decomposition. Homogeneous least-squares. Parameter estimation. - PowerPoint PPT Presentation

Transcript of Parameter estimation class 5

Parameter estimationclass 5

Multiple View GeometryCPSC 689

Slides modified from Marc Pollefeys’ Comp 290-089

Projective 3D Geometry

• Points, lines, planes and quadrics

• Transformations

• П∞, ω∞ and Ω ∞

Singular Value Decomposition

XXVT XVΣ T XVUΣ T

Homogeneous least-squares

TVUΣA

1X AXmin subject to nVX solution

Parameter estimation

• 2D homographyGiven a set of (xi,xi’), compute H (xi’=Hxi)

• 3D to 2D camera projectionGiven a set of (Xi,xi), compute P (xi=PXi)

• Fundamental matrixGiven a set of (xi,xi’), compute F (xi’TFxi=0)

• Trifocal tensor Given a set of (xi,xi’,xi”), compute T

Number of measurements required

• At least as many independent equations as degrees of freedom required

• Example:

Hxx'

11

λ

333231

232221

131211

y

x

hhh

hhh

hhh

y

x

2 independent equations / point8 degrees of freedom

4x2≥8

Approximate solutions

• Minimal solution4 points yield an exact solution for H

• More points• No exact solution, because

measurements are inexact (“noise”)• Search for “best” according to some

cost function• Algebraic or geometric/statistical cost

• X, X’ : measured value from the first image and the second image, respectively -- Known values with noise

• : estimated value – algorithm output

• : true value – (unknown).

Notations

'ˆ,ˆ XX

', XX

XHX '

Gold Standard algorithm

• Cost function that is optimal for some assumptions

• Computational algorithm that minimizes it is called “Gold Standard” algorithm

• Other algorithms can then be compared to it

Direct Linear Transformation(DLT)

ii Hxx 0Hxx ii

i

i

i

i

xh

xh

xh

Hx3

2

1

T

T

T

iiii

iiii

iiii

ii

yx

xw

wy

xhxh

xhxh

xhxh

Hxx12

31

23

TT

TT

TT

0

h

h

h

0xx

x0x

xx0

3

2

1

TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

Tiiii wyx ,,x

0hA i

Direct Linear Transformation(DLT)

• Equations are linear in h

0

h

h

h

0xx

x0x

xx0

3

2

1

TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

0AAA 321 iiiiii wyx

0hA i

• Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)

0

h

h

h

x0x

xx0

3

2

1

TTT

TTT

iiii

iiii

xw

yw

(only drop third row if wi’≠0)• Holds for any homogeneous

representation, e.g. (xi’,yi’,1)

Direct Linear Transformation(DLT)

• Solving for H

0Ah 0h

A

A

A

A

4

3

2

1

size A is 8x9 or 12x9, but rank 8

Trivial solution is h=09T is not interesting

1-D null-space yields solution of interestpick for example the one with 1h

Direct Linear Transformation(DLT)

• Over-determined solution

No exact solution because of inexact measurementi.e. “noise”

0Ah 0h

A

A

A

n

2

1

Find approximate solution- Additional constraint needed to avoid 0, e.g.

- not possible, so minimize

1h Ah0Ah

DLT algorithmObjective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h

Inhomogeneous solution

'

'h~

''000'''

'''''000

ii

ii

iiiiiiiiii

iiiiiiiiii

xw

yw

xyxxwwwywx

yyyxwwwywx

Since h can only be computed up to scale, pick hj=1, e.g. h9=1, and solve for 8-vector

h~

Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points)

However, if h9=0 this approach fails also poor results if h9 close to zeroTherefore, not recommendedNote h9=H33=0 if origin is mapped to infinity

0

1

0

0

H100Hxl 0

T

Degenerate configurations

x4

x1

x3

x2

x4

x1

x3

x2H? H’?

x1

x3

x2

x4

0Hxx iiConstraints: i=1,2,3,4

TlxH 4* Define:

4444* xxlxxH kT

3,2,1 ,0xlxxH 4* iii

TThen,

H* is rank-1 matrix and thus not a homography

(case A) (case B)

If H* is unique solution, then no homography mapping xi→xi’(case B)

If further solution H exist, then also αH*+βH (case A) (2-D null-space in stead of 1-D null-space)

Solutions from lines, etc.

ii lHl T 0Ah

2D homographies from 2D lines

Minimum of 4 lines

Minimum of 5 points or 5 planes

3D Homographies (15 dof)

2D affinities (6 dof)

Minimum of 3 points or lines

Conic provides 5 constraints

Mixed configurations?

Cost functions

• Algebraic distance• Geometric distance• Reprojection error

• Comparison• Geometric interpretation• Sampson error

Algebraic distanceAhDLT minimizes

Ahe residual vector

ie partial vector for each (xi↔xi’)algebraic error vector

2

22alg h

x0x

xx0Hx,x

TTT

TTT

iiii

iiiiiii

xw

ywed

algebraic distance

22

21

221alg x,x aad where 21

T321 xx,,a aaa

2222alg AhHx,x eed

ii

iii

Not geometrically/statistically meaningfull, but given good normalization it works fine and is very fast (use for initialization)

Geometric distancemeasured coordinatesestimated coordinatestrue coordinates

xxx

2

HxH,xargminH ii

i

d Error in one image

e.g. calibration pattern

221-

HHx,xxH,xargminH iiii

i

dd Symmetric transfer error

d(.,.) Euclidean distance (in image)

ii

iiiii

ii ddii

xHx subject to

x,xx,xargminx,x,H 22

x,xH,

Reprojection error

Reprojection error

221- Hx,xxHx, dd

22 x,xxx, dd

Comparison of geometric and algebraic distances

iiii

iiiiii wxxw

ywwye

ˆˆ

ˆˆhA

Error in one image

Tiiii wyx ,,x xHˆ,ˆ,ˆx Tiiii wyx

3

2

1

h

h

h

x0x

xx0TTT

TTT

iiii

iiii

xw

yw

222iialg ˆˆˆˆx,x iiiiiiii wxxwywwyd

ii

iiiiiiii

wwd

wxwxwywyd

ˆ/x,x

/ˆ/ˆˆ/ˆ/x,x

iialg

2/1222ii

typical, but not , except for affinities 1iw i3xhˆ iw

For affinities DLT can minimize geometric distance

Possibility for iterative algorithm

represents 2 quadrics in 4 (quadratic in X)

Geometric interpretation of reprojection error

Estimating homography~fit surface to points X=(x,y,x’,y’)T in 4

0Hxx ii

22

22222

ii

x,xx,x

ˆˆˆˆXX

iiii

iiiiiiii

dd

yyxxyyxx

2H

22 ,Xx,xx,x iiiii ddd

Analog to conic fitting

CxxC,x T2alg d

2C,xd

Sampson error

2XX

HνVector that minimizes the geometric error is the closest point on the variety to the measurement

XX

between algebraic and geometric error

XSampson error: 1st order approximation of 0XAh H C

XH

HXH δX

XδX

C

CC XXδX 0XH C

0δX

X XH

H

C

C eXJδ

Find the vector that minimizes subject to

Xδ eXJδXδ

XJ Hwith

C

Find the vector that minimizes subject to

Xδ eXJδXδ

Use Lagrange multipliers:

Lagrange:

derivatives

0Jδ2λ-δδ XXX eT

TT 0J2λ-δ2 X 0Jδ2 X e

λJδ XT

0λJJ T e

e1TJJλ

e1TT

X JJJδ

XδXX ee1TT

XTX

2

X JJδδδ

Sampson error

2XX

HνVector that minimizes the geometric error is the closest point on the variety to the measurement

XX

between algebraic and geometric error

XSampson error: 1st order approximation of 0XAh H C

XH

HXH δX

XδX

C

CC XXδX 0XH C

0δX

X XH

H

C

C eXJδ

Find the vector that minimizes subject to

Xδ eXJδXδ

ee1TT

XTX

2

X JJδδδ

(Sampson error)

Sampson approximation

A few points

(i) For a 2D homography X=(x,y,x’,y’) (ii) is the algebraic error vector(iii) is a 2x4 matrix,

e.g.

(iv) Similar to algebraic error in fact, same as Mahalanobis distance

(v) Sampson error independent of linear reparametrization (cancels out in between e and J)

(vi) Must be summed for all points(vii) Close to geometric error, but much fewer

unknowns

ee1TT2

X JJδ

eee T2

2

JJT e

31213T2T

11 /hxhx hyhwxywJ iiiiii XJ H

C XHCe

ee

1TT JJ

Statistical cost function and Maximum Likelihood

Estimation• Optimal cost function related to noise

model• Assume zero-mean isotropic Gaussian

noise (assume outliers removed) 22 2/xx,2πσ2

1xPr de

22i 2xH,x /

2iπσ2

1H|xPr ide

i

constantxH,xH|xPrlog 2i2i

σ2

1id

Error in one image

Maximum Likelihood Estimate

2i xH,x id

Statistical cost function and Maximum Likelihood

Estimation• Optimal cost function related to noise

model• Assume zero-mean isotropic Gaussian

noise (assume outliers removed) 22 2/xx,2πσ2

1xPr de

22i

2i 2xH,xx,x /

2iπσ2

1H|xPr

ii dd

ei

Error in both images

Maximum Likelihood Estimate

2i

2i x,xx,x ii dd

Mahalanobis distance

• General Gaussian caseMeasurement X with covariance

matrix Σ

XXXXXX 1T2

22XXXX

Error in two images (independent)

22XXXX

iiii

iii

Varying covariance's