P. F. Harrison (U. of Warwick) PERSPECTIVE ON · PDF filePREDICTED IN TRIMAX. MIX.! ! ! ! THE...

35
Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 1 1) “Plaquette Invariants and the Flavour-Symmetric…” P.F. Harrison, D. R. J. Roythorne, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph] 2)“Real Invariant Matrices and Flavour-Symmetric…” P.F. Harrison, W. G. Scott and T. J. Weiler, Phys. Lett. B 641 (2006) 372. hep-ph/0607336 3)“Simplified Unitarity Triangles for the Lepton Sector…” J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph0511201 4)“Covariant Extremisation of Flavour-Symmetric Jartlskog Invariants…” P.F. Harrison, and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/0508012 5) “The Simplest Neutririo Mass Matrix” P. F. Harrison and W. G. Scott Phys Lett. B B594 (2004) 324. hep-ph/0403278. …….. A FLAVOUR-SYMMETRIC P. F. Harrison (U. of Warwick) W. G. Scott (STFC, PPD/RAL) Miami-2008 17 Dec 2008 ( ) = 1/2 1/3 1/6 1/2 1/3 1/6 0 1/3 2/3 τ μ e U ν ν ν 2 3 2 1 “Tri-Bimaximal Lepton Mixing and the Neutrino Oscillation Data” P.F. Harrison, D. H. Perkins, W. G. Scott, Phys. Lett. B. 530 (2002) 167. hep-ph/0202074 (see also: HPS hep-ph/9904297 ) OUTLINE OF TODAYS TALK: NOW OFFICIALLY A “FAMOUS” PAPER ( > 250 CITES). “A TREMENDOUS ACHIEVEMENT!” T. D. LEE AT CERN - 30 AUG 2007 (CERN indico video min. 42!!) PERSPECTIVE ON NEUTRINO MIXING (emphasis on Flavour-Symmetry ) OF COURSE IT IS ACTUALLY THE EXPERIMENTS WHICH ARE TREMENDOUS! “Review” of past few years 2004-2007 of HS

Transcript of P. F. Harrison (U. of Warwick) PERSPECTIVE ON · PDF filePREDICTED IN TRIMAX. MIX.! ! ! ! THE...

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 1

1) “Plaquette Invariants and the Flavour-Symmetric…” P.F. Harrison, D. R. J. Roythorne,

and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]

2)“Real Invariant Matrices and Flavour-Symmetric…” P.F. Harrison, W. G. Scott

and T. J. Weiler, Phys. Lett. B 641 (2006) 372. hep-ph/0607336

3)“Simplified Unitarity Triangles for the Lepton Sector…” J. D. Bjorken, P.F. Harrison,

and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph0511201

4)“Covariant Extremisation of Flavour-Symmetric Jartlskog Invariants…” P.F. Harrison,

and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/0508012

5) “The Simplest Neutririo Mass Matrix” P. F. Harrison and W. G. Scott

Phys Lett. B B594 (2004) 324. hep-ph/0403278. ……..

A FLAVOUR-SYMMETRIC P. F. Harrison (U. of Warwick)

W. G. Scott (STFC, PPD/RAL)

Miami-2008 17 Dec 2008

( )

=

1/21/31/6

1/21/31/6

01/32/3

τ

µ

e

U

ν ν ν

2lν

321

“Tri-Bimaximal Lepton Mixing and the Neutrino Oscillation Data” P.F. Harrison,

D. H. Perkins, W. G. Scott, Phys. Lett. B. 530 (2002) 167. hep-ph/0202074 (see also: HPS hep-ph/9904297 )

OUTLINE OF TODAYS TALK:

NOW OFFICIALLY

A “FAMOUS” PAPER ( > 250 CITES).

“A TREMENDOUS ACHIEVEMENT!”

T. D. LEE AT CERN - 30 AUG 2007

(CERN indico video min. 42!!)

PERSPECTIVE ON NEUTRINO MIXING

(emphasis on Flavour-Symmetry )

OF COURSE IT IS ACTUALLY THE EXPERIMENTS WHICH ARE TREMENDOUS!

“Review”

of

past few

years

2004-2007

of HS…

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 2

T. D. LEE LECTURE AT CERN 30 AUG 2007

CERN video: http://indico.cern.ch/conferenceDisplay.py?confId=19674 (min. 42)

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 3

2/13/16/1

2/13/16/1

03/13/2

321

τµ

νννe

3/13/13/1

3/13/13/1

3/13/13/1

321

τµ

νννe

WE DID “ACHIEVE” SOMETHING HOWEVER:WE PREDICTED TWO SM+ PARAMETERS!!:

Tri-Bi-Maximal (HPS 1999/2002)

Tri-Maximal Mixing (HS/HPS 1994/1995)

HS/BHS (2002-2006)

* 3/1*

* 3/1*

* 3/1*

321

τµ

νννe

via Tri-Phi-Maximal & Tri-Chi-Maximal

(HS 2002)

“ -Trimaximal Mixing”

“S3 Group Mixing”

“Magic-Square Mixing”

“Tri-χφ-Maximal”

3/122 == µUUe

CHOOZ EXPT.SAYS < 0.03 (not HS/HPS!!)

There was never a prediction from HPS/HS of exact Ue3≡0!

Please not just “tri-maximal”!!

IMMEDIATELY

GENERALISES

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 4

Solar Datadist. spect. B and . systs corr. ignoring -Salt NoSalt of

average naivemy is 03.035.0/point SNO

8+

±=NCCC

ph/9601346-hep 111 (1996) 374 PLB also see ;ph/0202074-hep 167 (2002) 530 PLB HPS

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 5

ph/9601346-hep 111. (1996) 374 PLB HPS3 Fig.

MIX.TRIMAX.IN DICTEDPRE ! ! ! !

THE “5/9-1/3-5/9” BATHTUB

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 6

=

21

31

61

21

31

61

031

32

|U| 2

Symmetries of TriBimaximal Mixing:

1) “CP symmetry”

Zero CP violation J=0

(hopefully approximate!)

2) “µτ-reflection symmetry”

“Two rows equal” (=Max CPV!)

|Uµi|=|Uτi| for all i=1-3.

3) “democracy symmetry”

one trimaximal eigenvector

|Uαi|=|1/3 for all α for some i.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 7

HPS “Derivation” of TriBimaximal Mixing:

2

10

2

1

010

2

1-0

2

1

*

*

*

3

ω

3

1

3

33

1

3

ω3

1

3

1

3

1

τ

µ

e

ν ν ν * * * 321

ϖ

ϖ

νUUU l

m=

=

abb

bab

bba

*

*

*

MM

* * *

ll

=

x0y

0z0

y0x

*

*

*

MM

* * *

νν

=

τωµe

τµe

τµe

l

mωmm

ωmωmm

mmm

*

*

*

M

−−

2

i

3

1

6

12

i

3

1

6

1

03

1

3

2

τ

µ

e

ν ν ν 321

3 x 3 circulant

(by definition

of the * basis)

2 x 2 circulant

(determines

the physics)

=

m mm

UMMU

τµe

llll

diag2=mm

diag

3212 mmm

UMMU =ννννmm

mMM M →

In the “circulant basis”: *

ω/3m/3ωm/3mb

/3ωmω/3m/3mb

/3m/3m/3ma

2e

2e

2e

++=

++=

++=

A popular choice:

Harrison, Perkins, Scott, Phys. Lett. B. 530 (2002) 167. hep-ph/0202074

† †

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 8

YES – YOU’VE SEEN THESE NUMBERS BEFORE SOMEWHERE!

2

1

3

1

6

111

2

1

3

1

6

111

03

1

3

200

000

102

21

−+−

−+

Mmm

JM = 0

SUBSET

OF

CLEBSCH-

GORDAN

COEFFS.

e.g.

1 1 21 =⊗= jj

COULD

PERHAPS BE

A USEFUL

REMARK ?!!

See: J. D. Bjorken, P. F. Harrison and W.G. Scott. hep-ph/0511201

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 9

++

−−+

+−

++

−−

−−

+−

−−+

6

cissc

2

siscc

3

1

2

cissc

6

siscc6

cissc

2

siscc

3

1

2

cissc

6

siscc

cs3

2isc

3

2

3

1ss

3

2icc

3

2

φχφχφχφχφχφχφχφχ

φχφχφχφχφχφχφχφχ

φχφχφχφχ

“ν2-Trimaximal Mixing”

+−−

+−+−

6

si

2

c

3

1

2

si

6

c6

si

2

c

3

1

2

si

6

c

s3

2i

3

1c

3

2

χχχχ

χχχχ

χχ

++−

+−−−

6

s

2

c

3

1

2

s

6

c6

s

2

c

3

1

2

s

6

c

s3

2

3

1c

3

2

φφφφ

φφφφ

φφ

“Tri-χ-Maximal Mixing” “Tri-Φ-Maximal Mixing”

cosφc

sinφs

cosχc

sinχs

φ

φ

χ

χ

=

=

=

=

Exact µτ - Refl. Symm., J≠0 J=0, Break µτ-Symmetry

Χ→0Φ→0

“Tri-φχ-maximal mixing”, “S3 group mixing”

“Magic-square mixing”, “BHS-mixing”… .

“Symmetries and Generalisations of Tri-Bimaxiaml Mixing” P.F. Harrison, and W. G. Scott Phys. Lett. B 535 (2002) 163. hep-ph/0203029

“Permutation Symmetry, Tri-Bimaximal Mixing and the S3 Group ...” P.F. Harrison, and W. G. Scott Phys. Lett. B 557 (2003) 76. hep-ph/0302025

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 10

Symmetric Group S3

(natural representation):

=

001

100

010

P(123)

=

010

001

100

P(321)

=

100

010

001

I

=

100

001

010

P(12)

=

010

100

001

P(23)

=

001

010

100

P(31)

zP(12)yP(31)xP(23) P(321)bbP(123)aI

MM νν

+++++=

+=∗

odd"" even""

+

=∗

zxy

xyz

yzx

ν

ν

ν

abb

bab

bba

ν

ν

ν

ν ν ν ν ν ν

τ

µ

e

τ

µ

e

τµeτµe

Nature Plays Sudoku !!

Experiment tells us that

the neutrino mass matrix²in the (charged-lepton)

flavour basis can be written

as a 3 x 3 Magic Square !!All row/column sums equal !!

The most general such (hermitian) matrix may be constructed as an “S3 Group Matrix”

in the natural representation of the S3 group ring

2x)yy)/(x(z32φ

zx)yzxyzy(Imb)/(x62χ 222

−+−=−−−++=

tan

tan

Any “S3 Group Matrix”

clearly has (at least) one

trimaximal eigenvector:

1

1

1

3

1

ννMM

“circulant” “retro-circulant”

“ -Trimaximal Mixing”

=“Magic-Square”/”S3 Group Mixing”

=“Democracy Symmetry”

“Permutation Symmetry, Tri-Bimaximal Mixing and the S3 Group ...” P.F. Harrison, and W. G. Scott Phys. Lett. B 557 (2003) 76. hep-ph/0302025

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 11

Simplified Unitarity Traingles in the Lepton Sector

The Matrix* of UT angles:

“ν2.ν3”=“the ν1-triangle”

−−

−−

e3

e3

e3

321

U2

1C

2

1

3

1 C

6

1

U2

1C

2

1

3

1 C

6

1

U 3

1 C

6

2

τ

µ

e

ν ν ν

=

τ3τ2τ1

µ3µ2µ1

e3e2e1

321

φφφ

φφφ

φφφ

τ

µ

e

Φ

ν ν ν

“BHS” Mixing

Each angle Φαi appears inone row-based triangle and one column-based triangle

e

µ

τ

Uτ3

Uµ3Ue3

*Footnote [42] hep-ph/0511201

Note the natural “complementary”

labelling of angles and triangles

J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph0511201

CPCPCPCPe3e3e3e3

23232323e3e3e3e3 JJJJ

22223333

UUUU θθθθ----

4444

ππππ

2222

UUUU ≈≈

ImImImImReReReRe

= “ν2-Trimaximal”

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 12

“Simplified Unitarity Triangles for the Lepton Sector…”

J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph/0511201

×

××

×

++−+

+−−−

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

321

UU

Π

UU

τ

µ

e

ν ν ν

*1ν 1l1ν 1l

*1ν 1l1ν 1llν UUUU: Π −++++−−−=

J i K: Π lνlν +−=

π π π

π|

π|

π|

Π- ArgΠ- ArgΠ- Arg

Π- ArgΠ- ArgΠ- Arg

Π- ArgΠ- ArgΠ- Arg

τ

µ

e

φφφ

φφφ

φφφ

τ

µ

e

Φ

ν ν ν ν ν ν

τ3τ2τ1

µ3µ2µ1

e3e2e1

τ3τ2τ1

µ3µ2µ1

e3e2e1

321321

=

=

=

UUUUUUUUUUUU

UUUUUUUUUUUU

UUUUUUUUUUUU

τ

µ

e

Π

ν ν ν

*µ1

*e2µ2e1

*µ3

*e1µ1e3

*µ2

*e3µ3e2

*τ2

*e1τ1e2

*τ1

*e3τ3e1

*τ3

*e2τ2e3

*τ1

*µ2τ2µ1

*τ3

*µ1τ1µ3

*τ2

*µ3τ3µ2

321

We define the Matrix of UT Angles:*

From the Plaquette Products:

Form the Matrix of Plaquette Products:

*Footnote [42] hep-ph/0511201

3) (mod

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 13

ooo

o

o

o

4oo

ooo

ooo

tbtstd

cbcscd

ubussud

180 180 180

180|

180|

180|

)0(λ68112

239067

157221

t

c

u

φγφφ

χβφαφχγφ

φβφχβφ

t

c

u

Φ

bs d b s d

=

+==−=

=≈=

=

UNITARITY TRIANGLES IN THE QUARK SECTOR

THE MATRIX OF UNITARITY TRIANGLES IN THE QUARK SECTPR

EQUIVALENT INFO. TO CKM MATRIX !!

χ

α

β+χγ -χ

s

d

b

α

βγ

u t

c

“d.b”=“the s-triangle” “t.u”=“the c-triangle”

( in SM - see e.g. F. Muheim “Flavour in the Era of LHC” HEP Forum 21 June 2007)o1≈χ

!!!20 CDF/D0 o≈

Systematic “complemenatry” notation here

is a big improvement on existing notations!!

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 14

(3)(3)(3)(3)

22222T(2)∆∆

(2)

)1(1D 1)1(B )11(A 1) (1C

xy)(wz)zyx(wz)yx(w1)/2P.P (Tr1) (1G

xy)3(wzNL

T DetP Det)11( F

×=×=×=×=

+−+++++++=−=×=

−===×=

P.F. Harrison, D. R. J. Roythorn, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]

1) Flavour Symmetry: A fundamental theory of flavour should

be Flavour-Symmetric (ie. it should make no reference to explicit flavour indices).

The Principles which guide us:

Use Flavour-Symmetric Jarlskog Invariant variables!!The Architypal example:The Jarlskog CP-Invariant:

∆∆lν

N2L

N][L, DetiΠIm J −==

2) Jarlskog Invariance: A fundamental theory should be weak-basis independent

(i.e. it should make no reference to any preferred weak-basis).

We define 6 New Flavour-Symmetric Jarlskog-Invariant mixing variables :

Independent, of plaquette choice l,νhence “Plaquette Invariant”

νl S3S3 )11( ×⇐×

The Jarlskogian J is “odd-odd” under separate l and νflavour permutations:

νl S3S3 ×

ν33 CC l ×spanning theInvariant polynomial ring

(functions only of mixing angles)

“Plaquette Invariants and the Flavour-Symmetric …”

with odd/even symmetry under:

36F272C18G1081 J 22 −+−=An `elemental” set - not all independent, e,g,

ννν

lll

MMM N

MMM L

→=→= †

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 15

( )

b

s

d

1

1

1

tcu ( )

′′′

b

s

d

1

1

1

tcu

Jarlskog Invariance:

U(3)

(Also known as Weak-Basis Invaraince)

In any “weak” (“gauge”) basis the weak interaction

is diagonal and universal (i.e proportional to the identity matrix)

We often seem to choose to blame

the mixing on the “down” quarks!

weak basis

But we could equally choose to

blame it on the “up”-type quarks!

weak basis

Elsewhere in the Lagrangian: (i.e in the yukawa sector)

Mu is diagonal

(Md is non-diagonal)

Md is diagonal

(Mu is non-diagonal)

Mass²

Matrices

CC

weak

int.

All observables are Jarlskog Invariant:

e.g. masses, mixing angles: etc. J δ m m m

V m m m

13 3 µe

2 ub t du

θ

Note that the Jarlskogian J is (moreover) also Flavour-Symmetric !!

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 16

3333

3

2222

2

1

Tr :

Tr :

Tr :

τµ

τµ

τµ

mmmLL

mmmLL

mmmLL

e

e

e

++==

++==

++==

FLAVOUR-SYMMETRIC

Charged-Leptons: Mass Matrix:

JARLSKOG INVARIANT MASS PARAMETERS

321

τµ mmm

LLL

e

3

3

3

2

3

1

3

3

2

3

2

2

2

1

2

2

3211

Tr :

Tr :

Tr :

mmmNN

mmmNN

mmmNN

++==++==++==

321

321

mmm

NNN

Neutrinos: Mass Matrix:

lll MMM : L →=†

ννν MMM : N →= †

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 17

6/)23( Det

)/2( Pr

Tr

321

3

1

2

2

1

1

LLLLmmmL

LLmmmmmmL

LmmmL

e

ee

e

+−==

−=++=

=++=

τµ

ττµµ

τµ

THE CHARACTERISTIC EQUATION

e.g. For the Charged-Lepton Masses:

0 ) (Det ) Pr( ) (Tr 23 =−+− LLL λλλwhere:

The Disciminant:

222

6

13

3

1

2

3

2

2

2

1

3212

4

1

3

2

2

) ()()(

6/3/432/7

62/32/

ee mmmmmm

LLLLLL

LLLLLLL

−−−=−−−−

+−=∆

ττµµ

All are Flavour-Symmetric and Jarlskog Invariant!!

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 18

+++

+++

+++

==

LLL

L

L

3

1

3

1

3

1

z3

1y

3

1

3

1

x3

1w

3

1

3

1

)U(P2

xy)3(wzNL

T DetP Det)11( F

∆∆

(2) −===×=

)xy(wz)zyx(wz)yx(w1)/2P.P (Tr1) (1G 22222T(2) +−+++++++=−=×=

Flavour-Symmetric Mixing Observables…P.F. Harrison, D. R. J. Roythorn, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]

Six New FS Variables (“Plaquette Invariants”)

A, B, C, D, F, G, analogous to Jarlskog J,

order (n) with odd/even symmetry under - scalar or pseudoscalar.

z)]wz(wy)[xy(x2

9wxy)wxzwyz9(xyz1) (1C (3) +++++++=×=

y)]xy(xz)[wz(w2

3y)]wz(xz)xy(wx)xz(z

y)yz(zy)wy(wx)3[wx(w)zyx2(w)11(A 3333(3)

+−+++−++−+

−+−+−++−−=×=

x)]yyxwzz(w2

1wyz-xyz-wxzwxy

yz-zywxx[w331)1( B

2222

2222(3)

−+−+++

−+=×=

y)]xxywzz(w2

1wxz-xyz-wyzwxy

xz-zxwyy[w33)1(1 D

2222

2222(3)

−+−+++

−+−=×=

/4FF/43GBDAC 2G2GFDCBA 32322222 +=++=+++Not all independent

)xS3(S3 νl

B, D are

not l ↔ν

symmetric

νl xS3S32 x 2 of

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 19

−−−−++++

++−−

++−−

=

zx3

1yw

3

1zyxw

3

1

z3

1y

3

1zy

3

1

x3

1w

3

1xw

3

1

P

Plaquette Invariance (= Invariance)νl C3 x C3

xy-wzF/3 =

xy-wz

yzy-xy-yw- zyzwy yw

z)yxy(w-y)z)(w(yF/322

=−+++=

+++++=

“PLAQUETTE INVARIANT”!!!

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 20

−++++−−−+−

−−−+++−+−−

+−−++

9G

C

3G

A

G62

F

6

G

3

1

9G

2C

G6

F

3

1

9G

C

3G

A

G62

F

6

G

3

1

9G

C

3G

A

G62

F

6

G

3

1

9G

2C

G6

F

3

1

9G

C

3G

A

G62

F

6

G

3

1

9G

2C

6

G2

3

1

9G

4C

3

1

9G

2C

6

G2

3

1

P

Solving more generally for the P-matrix

Flavour-Symmetric Weak-Basis-Invariant Constraints on Mixing:

Democracy Symmetry

ie. one column=(1/3,1/3.1/3), iff: 0C 0F ==

“ µ–τ ” - Reflection Symmetry,

ie. two rows (or columns) equal, iff: 0A 0F ==

Tri-Bi-Maximal Mixing, iff: 0JACF ====

1/6G =in the limit F, A, C → 0 and 0 < G < 1/6, gives:

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 21

Ansatz F G C A Symm. 18J B D

Tri-Bi-Max. 0 1/6 0 0 Dem., µτ, CP 0 0 1/12√3Tri-Max. Mix. 0 0 0 0 Dem., µτ 1/6 0 0Tri-χφ-Max. 0 - 0 - Dem.(ocracy) - 0 -2 Rows Eq. 0 - - 0 e.g. µ-τ - 0 -2 Cols. Eq. 0 - - 0 e.g. 1-2 - - 0Alt.-Feruglio 0 - (6G-1)/8 0 µτ, CP 0 0 -Tri-χ-Max. 0 - 0 0 Dem., µτ - 0 -Tri-φ-Max. 0 1/6 0 - Dem., CP 0 0 -Orig. Bi-Max. 0 1/8 -1/32 0 CP, µ-τ,1-2 0 0 0No Mixing 1 1 1 1 CP 0 0 0

Jarlskog J measures CP-violation (J=0 protects against violation of CP).

F measures the acoplanarity of the P-vectors in the flavour space

(F=0 => Det <P(∞)> = 0, i.e. protects distant source against flavour analysis)

G = 3<<Pll(∞)>>-1 measures the flavour-averaged asymptotic survival prob….

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 22

=22211

22112

22111

2122122

21121

211

2121112

211

311

(3)

CC CC CC

CC CC CC

CC CC C

C

TrTrTr

TrTrTr

TrTrTr

C) NL

C

NL

T xy)3(wzP F

∆∆

(3)

∆∆3 Det (

DetDetDet ==−==

]N,i[LC nmmn −=Generalised Jarlskog Commutators:

The Matrix of Cubic Commutator Traces

The Jarlskog Commutator: N]i[L,C −=

3C C 3TrDet =controls CP violation:

=

222120

121110

020100

A A A

A A A

A A A

2

1T

TrTrTr

TrTrTr

TrTrTr

The Matrix of Anti-Commutator Traces(traces of mass-matrix products):

N,LA nmmn =And Anti-Commutators:

For example, F:

Directly in Terms of Mass Matrices: †

ννν

lll

MMMN

MMML

→=→=

In terms

of Mass

Matrices

only

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 23

=

===

=

=

=

22122

21111

21

2m

1m

0m

NL TrNL TrL

NL TrNL TrL

NN3

T

2n 1n 0n

=22222222

222222

2222

]N,[L Tr]N,N][L,[L TrN],[L Tr

]N,][LN[L, Tr]N,N][L[L, TrN],N][L[L, Tr

]N[L, Tr]NN][L,[L, TrN][L, Tr

2

1 Q

==2

τ12

τ12

τ1

2µ1

2µ1

2µ1

2e3

2e2

2e1

2

3ν2ν 1ν

|U||U||U|

|U||U||U|

|U||U||U|

τ

µ

e

)U(P

ml

nmmn m P. .mNL TrT ==

“Real Invariant Matrices and Flavour-Symmetric…”P.F. Harrison, W. G. Scott and T. J. Weiler, Phys. Lett. B 641 (2006) 372. hep-ph/0607336

==

τ3τ2τ1

µ3µ2µ1

e3e2e1

3ν2ν 1ν

KKK

KKK

KKK

τ

µ

e

)(KK

νν1n

l1m

llTlmn ∆ ∆ diag )Σ (diag K )Σ (diag ∆ diag ∆ Q −−=

The “P-matrix”: ) lνP(WPlν →= “T-matrix”

“Q-matrix”

The “K-matrix”

Moment Transform:

Moment Transform:

*1ν 1l

*1ν 1l1ν 1l1ν 1llν

lνlν

UUUUΠ

ΠRe K

−++−++−−=

−=2)PPPP(PK 1ν 1l1ν 1l1ν 1l1ν 1llνlν +−−+++−− +−=

”permanent”

3) (mod

(invertible)

(invertible)

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 24

FFTT .T.N.LT - .P..P 6F Tr -Tr =∈∈=

N .T..LT .PP 12G GGTT Tr Tr ==+

CCTT .Q.N.LT - .KP 612G32C Tr Tr =−=−−

AATT .Q.N.LT .K..P 2F-2A Tr Tr =∈∈=

CATT .Q.N.LT .K.P 32B Tr Tr =∈=

ACTT .Q.N.LT .K.P 32D Tr Tr =∈=

0.P.P .P.P TT ∈==∈ Tr Tr

011

101

110

=∈

Expressed as Traces

Two l ↔ν asymmetric cubic variables B,D:

No l ↔ν asymmetric quadratic variables:

Two quadratic variables G,Fentirely in terms of

Mass Matrices

Two l ↔ν symmetric cubic variables C,A:

etc. )L,L,(LLL 321GG =

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 25

=

03L

30L

LL0

L

1 L

1

2

12

∆F

Expressed as Traces (cont.)

The Mass-Polynomial Matrices Requd:entirely in terms of

Mass Matrices

etc. )L,L,(LLL 321GG =

1

432

321

21

G

LLL

LLL

LL3

L

=

221

2231

414 LL2L3L4L6L L −++=

3 L0 =

Anti-symmetric Matrix

Symmetric Matrix

K

K

== L

L

A

C

-1G∆ L DetL =

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 26

×

×

×

×

×

×

−+++

−−+−

+−−−

−+++

−−+−

+−−−

*1ν 1l1ν 1l

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

*1ν 1l1ν 1l

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

UU

UU

UU

UU

UU

UU

*1ν 1l1ν 1l

*1ν 1l1ν 1l

*1ν 1l1ν 1lI UUUUUU:Ω −++++−−−+−−−=

1/9 G1/3 C2/9 ΩΩoddeven

+−== ∑∑

*1ν 1l1ν 1l

*1ν 1l1ν 1llν UUUU: Π −++++−−−=

J i K: Π lνlν +−=

×

××

×

++−+

+−−−

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

UU

Π

UU

J 9i 1)/2- (G Πlν

lν +=∑ G)/2- (1 Klν

lν =∑

Flavour-Summed Loop Amplitudes

Usual Plaquette Product:4-Plaquette

Hexaplaquette Product:6-Plaquette

even odd

purely real

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 27

More Flavour-Symmetric Constarints:

0AF)(CG27F8C 23 =−−

0DF)(BG27F8B 23 =−−

1/3|U| 2i =α

2i

2i |U||U| βα =

Completely Symmetric CKM P-matrix:

DB =2

i2

i |V||V| αα =

0|U| 2i =α

F/54FC/2754F27A K Det|K|

36F272C18G1081 J3

22

−−+==

−+−=

0J 0|K| 2 ==

0V 0V 0V 0V

JFCAJ)F,C,V(A,

JFCA

2222

=∂=∂=∂=∂+++=

Extremise a “Potential”, e.g.:

0JFCA ====

Tri-Bi-Maximal

Mixing !!!

oαi

2

90φ

0J 0|K|

≈⇒

→=!!!

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 28

z yxAction =

EXTREMISATION: A TRIVIAL EXAMPLE

In the SM:

NOT BAD!!

><=><=><=

φφϕ

τ

µ

z

y

x

m

m

meGeV 180

2

v ≈=><φ

Add to SM Action, the determinant :

0 y

0

0

==∂==∂==∂

xA

zxA

zyA

z

y

x

0

0

0

≠==

z

y

x

τµ mmmL e Det =(taken here to be dimensionless) i. e.

zyx , ,Yukawa couplings

e.g.

P.F. Harrison and W. G. Scott Phys. Lett. B 333 (1994) 471. hep-ph/9406351

i.e. 2 zero mass

1 non-zero!

This notion appeared in:

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 29

“Covariant Extremisation of Flavour-Symmetric….”

P.F. Harrison, and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/0508012

0 ]Ci[L, /3 C Tr

0]Ci[N, /3 C Tr T23

N

T23L

=+=∂

=−=∂

0 C]i[L, /2C Tr

0C]i[N, /2C Tr T2

N

T2L

=−=−∂

=+=−∂

/3C 3 TrExtremising:

Extremising: - /2C 2Tr

We extremise wrt Mass Matrices theselves:

N]i[L,C −=

ννν

lll

MM MN

MM ML

→=→=

The Jarlskog Commutator:

31

31

31

31

31

31

31

31

31

21

210

21

210

001

Extremising:

/2Cr/3C 23 Tr TrV(C) +=

0/3)CC /2)CC C)C 3223 =−+− TrTrTr (((Characteristic Equationn:

0C =Tr

3 x 3 Max

2 x 2 Max

)V(C“The Simplest Neutrino Mass Matrix”P. F. Harrison and W. G. Scott PLB 594 (2004) 324. hep-ph/0403278

C) Det=(

(=ΣPrincipal Minors C)

et

perms.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 30

( )X/ : X ∂∂=∂TX A AX Tr =∂

) N][L, i : C ( −=

0] ],[,[

],[F

/2F Tr A

c.f.

νµµ

νµ

2

=∇∇∇⇓

∇∇==

Mills-Yang / Maxell

Extremise wrt the Mass matrices themselves!

Exploit Matrix Calculus Theorem

0 ]Ci[L, /3 C Tr

0 ]Ci[N, /3 C Tr T23

N

T23L

=+=∂

=−=∂

Apply to Extremise Tr C³

Weak-Basis

Covariant !!

Apply to Extremise Tr C²

0 C]i[L, /2C Tr

0 C]i[N, /2C Tr T2

N

T2L

=+=∂

=−=∂

Where A is any constant matrix and X is a variable matrix.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 31

−+

+−

−+

==

cidxidy

idxbidz

idyidza

ν

ν

ν

MMN

ν ν ν

τ

µ

e

νν

τµe

The “Epsilon” Phase Convention*

The usual (charged-lepton) flavour basis

has not been completely defined.

There remains the freedom to re-phase the fields

such that he imaginary part of the neutrino mass

matrix is proportional to the epsilon matrix

Incredible but true!!

Now the 7 parameters a, b, c, d, x, y, z encode directly

the 3 neutrino masses and the usual 4 mixing parameters.

*See Footnote 1 of: “The Simplest Neutrino Mass Matrix”

P. F. Harrison & W. G. Scott Phys Lett. B B594 (2004) 324. hep-ph/0403278

=

00001111----1111

111100001111----

1111----11110000

εεεε

εεεε NNNN ImImImIm i.e.i.e.i.e.i.e. ×=d

“the epsilom matrix”:

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 32

/2)C( Tr r /3)(C Tr V(C) 23 −+= N]i[L,C −=

Try a simple linear combination of the two:

)m)(mm(m

)md(mrdZ

Z

ZXY z

)m)(mm(m

)md(mrdY

Y

YZX y

)m)(mm(m

)md(mrdX

X

XYZ x

τµeτ

µe2

µeτµ

eτ2

eτµe

τµ2

−−

−−=±=

−−−

−=±=

−−

−−=±=

=

0.550.330.11

0.250.330.41

0.190.330.48

P

0.035h

GeV0.163 r/d 2

=→=

With the “Magic-Square constraint” imposed

there are analytical solutions:

Take r to be a constant with dimensions of (mass)²

In general, for sufficiently extreme hierarcy h → 0,

we are close to the pole at X →0, i.e. x→∞ and we have |x| >> y, z,

whereby the “Simplest” assumption must hold.

In this sense this V(C) above points to the “Simplest Neutrino Mass Matrix”

despite that in practice (in actuality!) the hierarchy h is too large!!

In practice:

X

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 33

”The Simplest Neutrino Mass Matrix”

P. F. Harrison and W. G. Scott Phys Lett. B594 (2004) 324. hep-ph/0403278.

0.030.13

m3m2

χ sin 2/3sinθ

2atm

2sol

13

±≈∆∆=

=

+−−

−+−=

2

ci

6

s-

3

1

2

si

6

c2

ci

6

s-

3

1

2

si

6

c

s3

2

3

1c3

2

τ

µ

e

U

ν ν ν

χχχχ

χχχχ

χχ

321

[ ] 0Mν =,DDDD

“Democracy Symmetry”

=

111

111

111

DDDD

“Mu-Tau Reflection Symmetry” (“mutautivity”)

ννT M) M( =*

EEEEEEEE

=

010

100

001

EEEE

Finally, implementing the “Simplest” Condition:

In the charged-lepton flavour basis, ie. where lM Is diagonal, we impose:

the “democracyoperator”

Ie. commutes withνM

the “µτ-exchangeoperator”

Note definition includesa complex conjugation

ddddεεεεxxxxaIaIaIaIMMMMνννν ++= EEEE

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 34

CONCLUSIONS

Again T. D. Lee’s lecture (a 2nd clip- from earlier in his talk)

Inspirational for anyone working on fermion mixing and flavour etc. :

“….these two 3 x 3 matrices (CKM and MNS) are the cornerstones

of particle physics… ….but do we understand them???”

1) “Tri-BiMaximal Mixing” has useful partners “Tri-χ-Maximal Mixing”,

and “Tri-φ-Maximal Mixing” and more generally “Tri- χφ-Maximal Mixing”

(now “ν2-Trimaximal Mixing”) which are also consistent with the data.

2) We have introduced 6 New Flavour-Symmetric Mixing Observables,

A,B,C,D,F,G which like the Jarlskogian J can be used to constrain

the mixings in an entirely flavour-symmetric way.

3) A programme of Extremisiing Flavour Symmetric Jarlskog Invariants,

Is under way with the aim of constraining both Mixings and Masses.

Thus far the best that can be said is that our results point towards

“The Simplest…” PLB 594 (2004) 324 (hep-ph/0403278) and Θ13 ~ 0.13.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 35

T. D. Lee CERN colloquium Aug 2007