Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta...

31
EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 1 EE247 Lecture 23 Oversampled ADCs – 1-Bit quantization Quantization error spectrum SQNR analysis Limit cycle oscillations –2 nd order Σ∆ modulator Dynamic range Practical implementation – Effect of various nonidealities on the Σ∆ performance EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 2 Oversampled ADCs Last Lecture Why Oversampling? Allows trading speed for resolution Relaxed transition band requirements for analog anti- aliasing filters Reduced baseband quantization noise power Utilizes low cost, low power digital filtering Issue of limit cycle oscillation (spurious inband tones) By simply increasing oversampling ratio: 2X increase in sampling ratio 0.5-bit increase in resolution To achieve greater improvement in resolution: Embed quantizer in a feedback loop Predictive (delta modulation) Noise shaping (sigma delta modulation)

Transcript of Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta...

Page 1: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 1

EE247Lecture 23

• Oversampled ADCs– 1-Bit quantization

• Quantization error spectrum• SQNR analysis• Limit cycle oscillations

– 2nd order Σ∆ modulator• Dynamic range • Practical implementation

– Effect of various nonidealities on the Σ∆ performance

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 2

Oversampled ADCsLast Lecture

• Why Oversampling?– Allows trading speed for resolution – Relaxed transition band requirements for analog anti-

aliasing filters– Reduced baseband quantization noise power– Utilizes low cost, low power digital filtering– Issue of limit cycle oscillation (spurious inband tones)

• By simply increasing oversampling ratio: 2X increase in sampling ratio à 0.5-bit increase in resolution

• To achieve greater improvement in resolution: – Embed quantizer in a feedback loopàPredictive (delta modulation)àNoise shaping (sigma delta modulation)

Page 2: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 3

Oversampling A/D Conversion

• Analog front-end à oversampled noise-shaping modulator•Converts original signal to a 1-bit digital output at the high rate of (2MX fsignal)

• Digital back-end à digital filter•Removes out-of-band quantization noise•Provides anti-aliasing to allow re-sampling @ lower sampling rate

1-bit@ fs

n-bit@ fs/M

Signal BW=fs/2M

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 4

Oversampled ADCPredictive Coding

• Quantize the difference signal rather than the signal itself• Smaller input to ADC à Buy dynamic range• Only works if combined with oversampling• 1-Bit digital output• Digital filter computes “average” àn-Bit output

+

_vIN

dOUT

Predictor

ADC

Page 3: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 5

Oversampled ADC

Decimator:• Digital (low-pass) filter• Removes quantization error for f > B• Provides most anti-alias filtering• Narrow transition band, high-order• 1-Bit input, N-Bit output (essentially computes “average”)

fs= MfN

FreqB

Signal“wide”

transition

SamplerAnalogAA-Filter

E.g.Pulse-CountModulator

Decimator“narrow”transition

fs1= M fN

DSP

Modulator DigitalAA-Filter

fs2= fN+ δ

1-Bit Digital N-BitDigital

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 6

Modulator

• Objectives:– Convert analog input to 1-Bit pulse density stream– Move quantization error to high frequencies f >>B– Operates at high frequency fs >> fN

• M = 8 … 256 (typical)….1024• Better be “simple”

à Σ∆ = ∆Σ Modulator

Page 4: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 7

Sigma- Delta Modulators

Analog 1-Bit Σ∆ modulators convert a continuous time analog input vIN into a 1-Bit sequence dOUT

H(z)+

_vIN dOUT

Loop filter 1b Quantizer (a comparator)

fs

DAC

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 8

Sigma-Delta Modulators

• The loop filter H can be either a switched-capacitor or continuous time• Switched-capacitor filters are “easier” to implement and scale with the

clock rate• Continuous time filters provide anti-aliasing protection• Can be realized with passive LC’s at very high frequencies

H(z)+

_vIN

dOUT

fs

DAC

Page 5: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 9

1st Order Σ∆ ModulatorIn a 1st order modulator, simplest loop filter à an integrator

+

_vIN dOUT∫

H(z) =z-1

1 – z-1

DAC

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 10

1st Order Σ∆ Modulator

Switched-capacitor implementation

Vi

-

+

φ1 φ2 φ2

1,0dOUT

+∆/2

-∆/2

Page 6: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 11

1st Order ∆Σ Modulator

• Properties of the first-order modulator:– Analog input range is equal to the DAC reference– The average value of dOUT must equal the average value of vIN

– +1’s (or –1’s) density in dOUT is an inherently monotonic function of vINà linearity is not dependent on component matching

– Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity

+

_vIN

dOUT

∫-∆/2≤vIN≤+∆/2

DAC-∆/2 or +∆/2

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 12

1st Order Σ∆ Modulator

3

Y

2

Q

1

X

Sine Wave

z -1

1-z -1

Integrator Comparator

Instantaneous quantization error

Tally of quantization error

1-Bitquantizer

1-Bit digital output stream,

-1, +1

Implicit 1-Bit DAC+∆/2, -∆/2

(∆ = 2)

Analog input-∆/2≤Vin≤+∆/2

Page 7: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 13

1st Order Modulator Signals

T = 1/fs = 1/ (M fN)

X analog inputQ tally of q-errorY digital/DAC output

Mean of Y approximates X

0 10 20 30 40 50 60

-1.5

-1

-0.5

0

0.5

1

1.5

Time [ t/T ]

Am

plit

ud

e

1st Order Sigma-Delta

XQY

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 14

Σ∆ Modulator Characteristics

• Quantization noise and thermal noise (KT/C) distributed over –fs/2 to +fs/2à Total noise reduced by 1/M

• Very high SQNR achievable (> 20 Bits!)• Inherently linear for 1-Bit DAC• Quantization error independent of component

matching• Limited to moderate to low speed

Page 8: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 15

0 0.1 0.2 0.3 0.4 0.5-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs ]

Am

plitu

de

[ dB

WN

]

First order sigma-delta, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30

Output Spectrum

• Definitely not white!

• Skewed towards higher frequencies

• Tones

• dBWN (dB White Noise) scale sets the 0dB line at the noise per bin of a random -1, +1 sequence

Input

sigma_delta_L1_sin.m

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 16

Quantization Noise Analysis

• Sigma-Delta modulators are nonlinear systems with memory à very difficult to analyze directly

• Representing the quantizer as an additive noise source linearizes the system

Integrator

ΣQuantizer

Model

QuantizationError e(kT)

x(kT) y(kT)

1

1H( )1

zz

z

−=+ Σ

Page 9: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 17

Signal Transfer Function

( )

1

1

0

H( )1

zz

z

H jjω

ωω

−=+

=

Signal transfer function à low pass function:

IntegratorH(z)Σ

x(kT)y(kT)

-

Frequency

Mag

nitu

de

f0

( )

( )0

1

1

1

( ) ( ) Delay

( ) 1 ( )

Sig

Sig

H js

Y z H zH z z

X z H z

ωω

=+

= = = ⇒+

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 18

Noise Transfer FunctionQualitative Analysis

2eqv

22

0n

fv f ×

Σvi

-

vo0

jωω

22 2

0eq n

fv v f = ×

Σvi -

vo0

jωω

Frequencyf0

2nv

Σvi

-

vo0

jωω

2 2

0eq n

fv v f = ×

Page 10: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 19

STF and NTF

Signal transfer function:

1( ) ( )STF Delay

( ) 1 ( )Y z H z

zX z H z

−= = = ⇒+

Noise transfer function:

erentiator Diff 1)(1

1)()(

NTF 1 ⇒−=+

== −zzHzE

zY

Integrator

ΣQuantizer

Model

QuantizationError e(kT)

x(kT) y(kT)

1

1H( )1

zz

z

−=+ Σ

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 20

Noise Transfer Function

( )( )

( ) ( )

( ) ( )

1

/ 2 / 2/ 2

/ 2

/ 2 / 2

/ 2

( ) 11

( ) 1 ( )

( ) (1 )=22

2 sin / 2

2 sin / 2

2sin / 2

where 1/

Thus:

( ) =2 sin / 2 =2 sin /

( )

j T j Tj T j T

j T

j T j

j T

s

s

y

Y zNTF z

E z H z

e eNTF j e e

e j T

e e T

T e

T f

NTF f T f f

N f

ω ωω ω

ω

ω π

ω π

ω

ω

ω

ω

ω π

−− −

− −

− −

= = = −+

−= −

=

= ×

= =

= 2( ) ( )eNTF f N f

Page 11: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 21

First Order Σ∆ ModulatorNoise Transfer Characteristics

( )

2

2

( ) ( ) ( )

4 sin /

y e

s

N f NTF f N f

f fπ

=

=

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 22

First Order Σ∆ ModulatorSimulated Noise Transfer Characteristic

0 0.1 0.2 0.3 0.4 0.5-50

-40

-30

-20

-10

0

10

20

30

Frequency [f/fs]

Am

plit

ud

e [

dB

WN

]

Sin input, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30

output spectrumNTF

Signal

Page 12: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 23

Quantizer Error• For quantizers with many bits

• Let’s use the same expression for the 1-Bit case

• Only simulation can tell if the result is useful

Experience: Often sufficiently accurate to be useful, with enoughexceptions to be very careful

( )12

22 ∆

=kTe

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 24

In-Band Quantization Noise

( )

( )

( ) ( )

( ) ( )

( )

2

2

2

1

1

1

2 2

2

22

2 2

3

11

4 sin / for 1

12sin

12

13 12

jfT

fsM

fsM

s

B

Y Q z eB

s

zH z

zNTF z z

NTF f f f M

S S f NTF z df

fT dff

M

π

π

π

π

=−

=−

= −

= >>

=

∆≅

∆≈

Page 13: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 25

Dynamic Range

M DR16 33 dB32 42 dB

1024 87 dB

2

2 2

3

32

32 2

peak signal power10log 10log

peak noise power

1 sinusoidal input, 1

2 2

13 12

92

9 910log 10log 30log

2 2

3.4 30l

X

Y

X

Y

X

Y

SDR

S

S STF

SM

SM

S

DR M M

DR dB

π

π

π π

= =

∆ = =

∆=

=

= = +

= − + + og M

2X increase in Mè9dB (1.5-bit) increase in DR

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 26

Oversampling and Noise Shaping

• Σ∆ modulators have interesting characteristics– Unity gain for input signal VIN– Large attenuation of quantization noise injected at quatizer input– Performance significantly better than 1-Bit noise performance possible

for frequencies << fs

• Oversampling (M = fs/fN > 1) improves SQNR considerably– 1st-Order Σ∆: DR increases 9dB for each doubling of M– SQNR independent of circuit complexity and accuracy

• Analysis assumes that the quantizer noise is “white”– Not true in practice, especially for low-order modulators– Practical modulators suffer from other noise sources also

(e.g. thermal noise)

Page 14: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 27

DC Input

• DC input A = 1/11

• Doesn’t look like spectrum of DC at all

• Tones frequency shape the same as quantization noiseà more prominent at higher frequencies

à Quantization “noise”is periodic

0 0.1 0.2 0.3 0.4 0.5-50

-40

-30

-20

-10

0

10

20

30

Frequency [ f/fs]

Am

plitu

de

[ dB

WN

]

First order sigma-delta, DC input, offset=0.0909091, N=1024, K=30

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 28

Limit Cycle

0 10 20 30 40 50

-0.4

-0.2

0

0.2

0.4

0.6

Time [t/T]

Out

put

First order sigma-delta, DC input

-111

+110

-19

+18

-17

+16

-15

+14

-13

+12

+11

DC input 1/11 àPeriodic sequence:

Page 15: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 29

Limit Cycle

In-band spurious tone with f ~ DC input

• Problem: quantization noise is periodic•Solution:

ØDither: randomizes quantization noise- thermal noise à dither

ØSecond order loop

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 30

1st Order Σ∆ Modulator

( )1 1( ) ( ) 1 ( ) Y z z X z z E z− −= + −

Page 16: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 31

2nd Order Σ∆ Modulator

•Two integrators•1st integrator non-delaying•Feedback from output to both integrators•Tones less prominent compared to 1st order

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 32

2nd Order Σ∆ Modulator

( )

( )1 1 2

21 1

2

( ) ( ) 1 ( )

n n n n nY X E E E

Y z z X z z E z

− − −

− −

= + − +

= + −

Page 17: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 33

2nd Order Σ∆ ModulatorIn-Band Quantization Noise

( )

( ) ( )( )

( )

1

1

21

2

44

11

1

2 sin / for 1s

zH z

zG

NTF z z

NTF f

f f Mπ

=−

=

= −

=

= >>

( ) ( )

( )

2

2

2

2

24

4 2

5

12sin

12

15 12

jfT

fsM

fsM

B

Y Q z eB

s

S S f NTF z df

fT dff

M

π

π

π

=−

=

∆≅

∆≈

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 34

Quantization Noise

2nd Order Σ∆ Modulator

Page 18: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 35

2nd Order Σ∆ Modulator Dynamic Range

M DR16 49 dB32 64 dB

1024 139 dB

2

4 2

5

54

54 4

peak signal power10log 10log

peak noise power

1 sinusoidal input, 1

2 2

15 12

152

15 1510log 10log 50log

2 2

11.1

X

Y

X

Y

X

Y

SDR

S

S STF

SM

SM

S

DR M M

DR dB

π

π

π π

= =

∆ = =

∆=

=

= = +

= − + 50log M+

2X increase in Mè15dB (2.5-bit) increase in DR

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 36

2nd Order Σ∆ Modulator Example

Mè256 to allow some marginà Sampling rate (2x20kHz + 5kHz)M = 12MHz

•Digital audio application•Signal bandwidth 20kHz•Resolution 16-bit

min

16 98 Dynamic Range

11.1 50log153

bit dB

DR dB MM

− →

= − + +=

Page 19: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 37

Higher Order Σ∆ Modulator Dynamic Range

( )

( )

( )

( ) ( )

1 1

2

2 2

2 1

2 12

2 12

2

( ) ( ) 1 ( ) , L order

1 sinusoidal input, 1

2 2

12 1 123 2 1

2

3 2 110log

2

3 2 110log 2 1 10

2

L

X

L

Y L

LXL

Y

LL

L

Y z z X z z E z

S STF

SL M

LSM

S

LDR M

LDR L

π

π

π

π

− −

+

+

+

= + − → Σ∆

∆ = =

∆=

++

=

+=

+

= + + ×

log M×

2X increase in Mè(6L+3)dB or (L+0.5)-bit increase in DR

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 38

Σ∆ Modulator Dynamic RangeAs a Function of Modulator Order

• Stability issues for L>2

Page 20: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 39

Tones in 1st Order & 2nd Order Σ∆ Modulator

•Higher oversampling ratio à lower tones

•2nd order much lower tones compared to 1st

•2X increase in M decreases the tones by 6dB for 1st order loop and 12dB for 2nd

order loop

Ref: B. P. Brandt, D. E. Wingard, and B. A. Wooley, "Second-order sigma-delta modulation for digital-audio signal

acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.R. Gray, “Spectral analysis of quantization noise in a single-loop sigma–delta modulator with dc input,” IEEE

Trans. Commun., vol. 37, pp. 588–599, June 1989.

6dB

12dB

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 40

2nd Order Σ∆ ModulatorSwitched-Capacitor Implementation

Page 21: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 41

Switched-Capacitor Implementation 2nd Order Σ∆Phase 1

•Sample inputs•Compare output of 2nd integrator•At the end of phase1 S3 opens prior to S1

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 42

Switched-Capacitor Implementation 2nd Order Σ∆Phase 2

•Enable feedback•Integrate•Reset comparator•At the end of phase2 S4 opens before S2

Page 22: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 43

Practical Design Considerationsfor Σ∆ Implementation

•Internal nodes scaling & clipping•Finite opamp gain & linearity•Capacitor ratio errors•KT/C noise•Opamp noise•Power dissipation considerations

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 44

Switched-Capacitor Implementation 2nd Order Σ∆Nodes Scaled for Maximum Dynamic Range

•Modification (gain of ½ in front of integrators) reduce & optimize required signal range at the integrator outputs ~ 1.7x input full-scale (∆)

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

Page 23: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 45

2nd Order Σ∆ ModulatorSwitched-Capacitor Implementation

C2=2C1

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 46

2nd Order Σ∆Effect of Integrator Maximum Signal Handling Capability on SNR

•Effect of 1st Integrator maximum signal handling capability on converter SNRRef: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State

Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

Page 24: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 47

2nd Order Σ∆Effect of Integrator Maximum Signal Handling Capability on SNR

•Effect of 2nd Integrator maximum signal handling capability on SNRRef: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State

Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 48

2nd Order Σ∆Effect of Integrator Finite DC Gain

Vi

-

+

φ1 φ2

aVo

Cs

CI

( )

( )

1

1

1

1

1

1

11

1

ideal

Finit DC Gain

Cs zH z

CI z

az

Csa

Cs CIH zCI

az

Csa

CI

= ×−

+ + = ×

+−

+ +

Page 25: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 49

2nd Order Σ∆Effect of Integrator Finite DC Gain

•Low integrator DC gain à degrades noise performance•If a>M (oversampling ratio) à Insignificant degradation in SNR•Normally DC gain designed to be >> M in order to suppress nonlinearities

Max signal level

f0 /a

a

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 50

2nd Order Σ∆Effect of Integrator Finite DC Gain

•Simulation results•H0=a à finite DC gain• a> M à no degradation in SNR

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

Page 26: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 51

2nd Order Σ∆Effect of Integrator Overall Integrator Gain Inaccuracy

• Gain of ½ in front of integrators is a function of C1/C2 of theintegrator •The effect of C1/C2 inaccuracy inspected by simulation

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 52

2nd Order Σ∆Effect of Integrator Overall Gain Inaccuracy

• Simulation show gain can vary by 20% w/o loss in performanceà Confirms insensitivity of Σ∆ to component variations

•Note that for gain >0.65 system becomes unstable & SNR drops rapidly

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

Page 27: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 53

2nd Order Σ∆Effect of Integrator Nonlinearities

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 54

2nd Order Σ∆Effect of Integrator Nonlinearities

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

• Simulation for single-ended topology•Even order nonlinearities can be significantly attenuated by using differential circuit topologies

Page 28: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 55

2nd Order Σ∆Effect of Integrator Nonlinearities

Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

• Simulation for single-ended topology•Odd order nonlinearities (3rd in this case)

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 56

2nd Order Σ∆Effect of KT/C noise

•For the example of digital audio with 16-bit (100dB) & M=256à Cs=1pF à 6µVrms noiseàIf FS=4Vp-p-d then noise is -107dB à almost no degradation in overall SNRàCs=1pF, CI=2pFà small cap area compared to Nyquist ADC capsàSince thermal noise provides some level of dithering à better not choose much larger capacitors!

Vi

-

+

φ1 φ2

aVo

Cs

CI

2

2

20

2

1/ 2 4

/ 2Total in-band noise:

4

2

n

n

n input

KTv

CskT kT

v fCs fs Cs fs

kTv f

Cs fskT

Cs M

=

= × =×

= ××

Page 29: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 57

2nd Order Σ∆Effect of Finite Opamp Bandwidth

Input/Output z-transform

Vi+

Cs-

+ Vo

CIφ1 φ2

Vi-

Unity-gain-freq.= fu =1/τ

Vo

φ2

T=1/fs

settlingerror

time

Assumption-Opamp à does not slewOpamp has only one pole à exponential settling

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 58

2nd Order Σ∆Effect of Finite Opamp Bandwidth

à Σ∆ does not require high opamp bandwidth fu ~ 2fs adequate

Page 30: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 59

2nd Order Σ∆Effect of Slew Limited Settling

φ1

φ2

Vo-real

Vo-ideal

Clock

Slewing Slewing

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 60

2nd Order Σ∆Effect of Slew Limited Settling

Assumption-Opamp settling à slew limitedàMinimum slew rate of 1.2 (∆ x fs) requiredàLow slew rate degrade SNR rapidly

Page 31: Oversampled ADCs Last Lecture - University of …ee247/fa04/fa04/lectures/L23_2_f04.pdfSigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 61

2nd Order Σ∆Comparator Hysteresis

Assumption-1-bit A/D à Comparator has hysteresis Comparator offset similar effect

EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 62

2nd Order Σ∆Comparator Hysteresis

à Comparator hysteresis < ∆/40 does not affect SNRà E.g. ∆=1V, comparator offset up to 25mV tolerable