Outline - Cornell University

28
CHESS ERL workshop 1 ESRF Focusing X-ray beams below 50 nm using bent multilayers O. Hignette Optics group European Synchrotron Radiation Facility (FRANCE) ESRF Outline • Graded multilayers resolution limits • 40 nanometers focusing • Fabrication and metrology processes • projection microscopy • Perspectives

Transcript of Outline - Cornell University

Page 1: Outline - Cornell University

CHESS ERL workshop 1

ESRFFocusing X-ray beams below 50 nm using bent multilayers

O. Hignette Optics groupEuropean Synchrotron Radiation Facility (FRANCE)

ESRF

Outline

• Graded multilayers resolution limits • 40 nanometers focusing• Fabrication and metrology processes• projection microscopy • Perspectives

Page 2: Outline - Cornell University

CHESS ERL workshop

ESRFgraded multilayer resolution limits

Are volume diffraction – scattering effects limiting factors ?

LfΛ1.7

maxNAλ0.44FWHM ≅=diffraction limited

full width half maximum

Λ d-spacingλ Wavelengthf focal lengthL mirror lengthNA numerical aperture

Ultimate FHWM ≅ 4 nm

Energy independant

Page 3: Outline - Cornell University

CHESS ERL workshop

ESRF

Multilayer comparison with metal coated mirrors

cθλ1.3

NAmaxλ0.44FWHM ≅=

For Platinum FWHM = 21 nm

θsinΛ2λ = angle of incidence 5X larger than Pt for 20 Angstrom d-spacing

Small focal length with large acceptance possible

High energy applications

Metallic mirror width limit

Page 4: Outline - Cornell University

CHESS ERL workshop

ESRFPushing the limits : double reflections

and annular type architectures

Wolter II NAMAX X 8 FWHM ≅ 0 .5 nm

4 mirrors KB

NAMAX X 2 FWHM ≅ 2 nm

Ellipsoid NA ≅ 2θNAMAX X 4 FWHM ≅ 1 nm NA

Page 5: Outline - Cornell University

CHESS ERL workshop

ESRFLimiting factors

Alignment ,vibrations, T drifts mirror figure errors and roughnessMultilayer fabrication inaccuraciesVolume effects (evanescent wave, phase shifts, scattering)

Diffraction limited figure tolerances

51327 .sinΛ

==θ

λσz

Λ multilayer d-spacing

λ Wavelength

θ incidence angle

σz= 0.22 nm rms for Λ=3 nm σz= 0.8 nm rms for Platinum

sub-angstrom roughness for multilayers

Page 6: Outline - Cornell University

CHESS ERL workshop

ESRFID19 line nanofocusing multilayer experiment

Mirror bender

Graded MLFocus detection

Dynamical bender

Aperture slits

Beam

Energy 24 Kev focal length 80mm incidence angle 5.5 mrd vertical 25 μm FWHM source at 150 m

ΔE − 6%E

[W/B4C]25

Page 7: Outline - Cornell University

CHESS ERL workshop

ESRFNanowire fluorescence linewidth measurement

18 nm thickness9 mrd incidence beam

1.9 μ m Ruthenium ribbon

Carbon substrate

piezo translation

fluor

esce

ntvo

lum

e

equivallent fluo-nanowire function

FWHM 18 nm

Piezo translation

Page 8: Outline - Cornell University

CHESS ERL workshop

ESRF

Line profile measurements

Raw data nanowire volume deconvolution

Page 9: Outline - Cornell University

CHESS ERL workshop

ESRFLinesize versus acceptance

Page 10: Outline - Cornell University

CHESS ERL workshop

ESRFMirror figure errors limitations ?

line size vs acceptance

Wavefront phase errorFrom Xray in situ metrology

Estimated error 25 nrd rms(Pencil beam method )

Figure error 0.75 nm PV

Page 11: Outline - Cornell University

CHESS ERL workshop

ESRFVibrations measurements

BPM XCCD camera Integration time <1 ms

3nm rms position noise estimate

20

Vibrations environment was not adequate for this test

New design to be tested ≅ 20 nm

Page 12: Outline - Cornell University

CHESS ERL workshop

ESRFManufacturing – Metrology

ESRF nanofocusing platform ( 6 KB systems - 40 nm)

Process steps

Substrate figuring – (bender attachment)optical metrology

deterministic finishingmultilayer sputtering, In situ Xray metrology

multilayer phase correction

Start from (nearly) available technologies. incremental improvements

Closed loop figuring – metrology process

Page 13: Outline - Cornell University

CHESS ERL workshop

ESRFFabrication processes used

ProcessesComputer control polishing Differential Width profiling

Stressed polishing Differential- profile coating

Ion beam figuring (IBF) Partners

APS optics groupZeiss

General optics Crystal scientific

Winlight

Smooth initial figuring deterministic correction with limited spatial resolution

Page 14: Outline - Cornell University

CHESS ERL workshop

ESRF

Stressed polishing

Figuring processes

Lapping / PolishingComputer Controlled

Ion Beam FiguringComputer Controlled

Page 15: Outline - Cornell University

CHESS ERL workshop

ESRFZeiss IBF capability

Zeiss D100 measurement

face to the side

Flat mirror for SPring8

Results: Zeiss D100 BESSY NOMSlope error 0.10 µrad rms 0.13 µrad rmsResidual figure error 0.21 nm rms 0.56 nm rms

1.4 nm pv 2.3 nm pvRadius 60 km 61.2 km

Agreement in the sub-nm range !!!

Flat mirrors

Bessy NOM

Page 16: Outline - Cornell University

CHESS ERL workshop

ESRFAPS- ESRF profile coating KB project

R.Conley

37 X 77 mm focal length mirrors

L.Assoufid

Page 17: Outline - Cornell University

CHESS ERL workshop

ESRF

Dynamic KB : starting from existing designs

ID19 low beta source at 150 mEnergy 15 to 24 keV

ID22 60 m high beta sectionslitted source Energy 17 kev

Page 18: Outline - Cornell University

CHESS ERL workshop

ESRFShrinked design for dynamic KB

ImprovementsReduce focal length Mirror figure errors System vibrations Temperature induced drifts - feedback

Page 19: Outline - Cornell University

CHESS ERL workshop

ESRF

Available metrology instrumentation for strong aspheres

New commercial stitching interferometers ADE phase shift , QEDEvaluated by L. Assoufid at APS

LTP accuracy being evaluated(Round Robin)

ESRF In situ Xray metrology(many other wavefront methodscoming along)

Need : 0.1 nm rms accuracy

Page 20: Outline - Cornell University

CHESS ERL workshop

ESRF

ESRF pencil beam In situ metrology (wavefront derivative )

δα

L

Focal plane deviations = 2 δα L

80 mm FL multilayer (41 nm FWHM)

20 nanoradian rms slope precision

figure error repeatabilty over 36 mm :0.15 nm PV (0.03 nm rms)

Page 21: Outline - Cornell University

CHESS ERL workshop

ESRFMedium- long term perspectives

Static multilayers mirrors preferred

Substrate figuring : Zeiss, OSAKA U (JTEC) , TINSLEY capability already at the nanometer level - Roughness to be confirmed

Multilayers : Very steep gradients and phase correction feasability to be proven

Metrology : Xray wavefront methods necessary and probably sufficientmuch beamtime needed.

In situ figuring an attractive option

Page 22: Outline - Cornell University

CHESS ERL workshop

ESRFPooling of synchrotron sources resources ?

European FP7 initiative

Europe -US collaborations

Rely on what will be commercially available (OSAKA-JTEC)

Synchrotrons ChallengeEstablish a predictable secure procurement for all process operations

keep control especially for metrology

Market is small with respect to needed investments

Page 23: Outline - Cornell University

CHESS ERL workshop

ESRF

Application : projection microscopy

Magnification: (z1 + z2)/z1 = 3Defocus: z1 z1/(z1 + z2) = 22 mm

M = 9D = 29 mm

M = 18D = 31 mm

Energy = 19 keV

10 µm

2D detector2 μm resolution

KB

z1

z2

objectfocus

Defect of grating on a 100 nm scale revealed

P. Cloetens, O. Hignette

Fresnel diffraction pattern - Spot size limited resolution

Page 24: Outline - Cornell University

CHESS ERL workshop

ESRF

D = 45 mm

10 μm

Rel. Phase Map

5distances

Neuron cell

Phase RetrievalPossible single shot imaging with a priori information

Page 25: Outline - Cornell University

CHESS ERL workshop

ESRF

R Mokso et al, submitted to Appl. Phys. Lett

Inside φ = 1 mm sample → local tomography!E = 20.5 keVX-ray magnification ~ 80 (voxel size = 90 nm)

Al / Si alloytomographic slice

75 μm

SiPoreAl5FeSi

Application example : Magnified Tomography on ID19(projection imaging)

Page 26: Outline - Cornell University

CHESS ERL workshop

ESRFConclusions

Reflective optics technology is now a serious candidatefor < 10 nm nanofocusing

Acknowledgements C.Morawe, P.Cloetens, R.Baker, A.Seifert, L Assoufid, R.Conley

How and where to put resources to establish

Full processes control

1 nm goal needs huge (coordinated) efforts but not a total dream

Most needed technologies have been proven at a research level

Page 27: Outline - Cornell University

CHESS ERL workshop

ESRF

Page 28: Outline - Cornell University

CHESS ERL workshop

ESRF

Technologies developped at ESRFShort term KB nanofocusing projects

50 X 50 10 – 14 37 X 77Ptstatic

200 X 1002.5 - 7.5 60 X 150Nistatic

200 X 20010 - 14 80 X 177Ptdynamic

300 X 4050 - 100240 X 100multilayerdynamic

300 X 20010 - 14 160 X 360multilayerdynamic

50 X 5013 - 2583 X 180multilayerdynamic

spot size(nanometers)

energy range kev

focal lengthHXV(mm)

coating system type