Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ...

33
Orbital approximation Assign the electrons to an atomic orbital and a spin Construct an antisymmetrized wave function using a Slater determinant evaluate the energy with the Hamiltonian that includes the electron-electron interactions | | H E Ψ Ψ = ΨΨ 1 1 1 2 1 1 1 1 2 1 1 2 1 2 () ( ) ( ) () ( ) ( ) 1 (, , , ) ! () ( ) ( ) Z Z Z s s s N Z Z Z s s s N N Z Z Z N N N N r r r r r r rr r N r r r φ φ φ φ φ φ φ φ φ Ψ =

Transcript of Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ...

Page 1: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Orbital approximation

• Assign the electrons to an atomic orbital and a spin• Construct an antisymmetrized wave function using a Slater

determinant• evaluate the energy with the Hamiltonian that includes the

electron-electron interactions

| |HE

Ψ Ψ=

Ψ Ψ

1 1 1 2 1

1 1 1 2 11 2

1 2

( ) ( ) ( )( ) ( ) ( )1( , , , )

!( ) ( ) ( )

Z Z Zs s s NZ Z Zs s s N

N

Z Z ZN N N N

r r rr r r

r r rN

r r r

φ φ φφ φ φ

φ φ φ

↑ ↑ ↑↓ ↓ ↓

Ψ =

↓ ↓ ↓

Page 2: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Lithium

The antisymmetric 3 electron wavefunction can be written

1 1 1 2 1 3

1 2 3 1 1 2 1 1 1 2 1 3

2 1 2 2 2 3

( ) ( ) ( )1( , , ) , , ( ) ( ) ( )3! ( ) ( ) ( )

Li Li Lis s s

Li Li Li Li Li Lis s s s s s

Li Li Lis s s

r r rr r r r r r

r r r

φ φ φφ φ φ φ φ φ

φ φ φ

↑ ↑ ↑Ψ = ↑ ↓ ↑ = ↓ ↓ ↓

↑ ↑ ↑

Construct the Hamiltonian matrix to see which has the lowest energy

There are two possible configurations

1 1 2, ,Li Li Lis s sφ φ φ↑ ↓ ↑ and 1 1 2, ,Li Li Li

s s sφ φ φ↑ ↓ ↓

Page 3: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Berylium

The antisymmetric 4 electron wave function can be written,

1 2 3 4 1 1 2 2

1 1 1 2 1 3 1 4

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

2 1 2

( , , , ) , , ,

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1( ) ( ) ( ) ( )4!( ) (

Be Be Be Bes s s s

Be Be Be Bes s s sBe Be Be Bes s s sBe Be Be Bes s s s

Be Bes s

r r r r

r r r rr r r rr r r rr

φ φ φ φ

φ φ φ φφ φ φ φφ φ φ φφ φ

Ψ = ↑ ↓ ↑ ↓

↑ ↑ ↑ ↑↓ ↓ ↓ ↓

=↑ ↑ ↑ ↑↓ ↓

2 2 3 2 4) ( ) ( )Be Bes sr r rφ φ↓ ↓

Page 4: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Gold

The antisymmetric 79 electron wave function can be written,

79 79 791 2 79 1 1 1 2 6 79( , , , ) ( ), ( ), , ( )s s sr r r r r rφ φ φΨ = ↑ ↓ ↑

The determinant of an N×N matrix has N! terms.

79! = 8.95 × 10116

(more than the atoms in the observable universe)

Start with the valence electrons. Stop adding electrons when the matrix gets too big.

Page 5: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Pauli exclusion

The sign of the wave function must change when two electrons are exchanged

( )1 1 2 11 2 1 1 2 2 1 2 2 1

1 2 2 2

( ) ( )1 1( , ) ( ) ( ) ( ) ( )( ) ( )2 2r r

r r r r r rr r

φ φφ φ φ φ

φ φΨ = = −

The Pauli exclusion principle only holds in the noninteracting electron approximation when the many electron wave function can be written as a product of single electron wave functions, only one electron can occupy each single electron state.

If two columns are exchanged, the wave function changes sign.

If two columns are the same, the determinant is zero.

Page 6: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Atomic physics summary

Solutions to the Schrödinger equation accurately describe the observed energy levels in atoms.

We know the equation that needs to be solved but it is intractable.

A common first approximation is the orbital approximation: Assign the electrons to an atomic orbital and a spin antisymmetrized product of spin orbitals.

The energy is then evaluated including the electron-electron interactions.

Sometimes assumptions have to be made about the core wave functions and the wave functions of the valence electrons are determined numerically.

| |HE

Ψ Ψ=

Ψ Ψ

Page 7: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

The full Hamiltonian of a molecule

Everything you can know about the molecule is contained in the Hamiltonian.

This explains life, the universe, and everything!

2 22 2 22 2

, 0 0 02 2 4 4 4A A B

i Ai A i A i j A Be A iA ij AB

Z e Z Z eeHm m r r rπε πε πε< <

= − ∇ − ∇ − + +∑ ∑ ∑ ∑ ∑

Page 8: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Born Oppenheimer approximation

Fix the positions of the nuclei and consider the many electron Hamiltonian.

This is still too difficult. Neglect the electron-electron interactions.

2 22 22

, 0 0 02 4 4 4A A B

elec ii i A i j A Be iA ij AB

Z e Z Z eeHm r r rπε πε πε< <

= − ∇ − + +∑ ∑ ∑ ∑

Page 9: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Separation of variables (Trennung der Veränderlichen)

The Schrödinger equation can be solved by the separation of variables if the total Hamiltonian can be written as a sum of Hamiltonians each depending on only one variable.

Ht(r1,r2,...rn) = H1(r1) + H2(r2) + ... Hn(rn)

22 22

, 0 02 4 4A

elec ii i A i je iA ij

Z e eHm r rπε πε<

= − ∇ − +∑ ∑ ∑

222

_02 4

Aelec red i MO

i A ie iA

Z eH Hm rπε

−= ∇ − =

∑ ∑ ∑

Page 10: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbital Hamiltonian

A B

1

C

+

-

+rAB

r1C

rAC

rBC

r1Br1A

+

Fix the positions of the nuclei. Solve the Schrödinger equation for one electron. Find the ground state and the excited states.

2221

0 12 4A

MOAe A

Z eHm r rπε−

= ∇ −−∑

Page 11: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals

Molecular orbitals of a molecule are like the atomic orbitals of an atom.

1

2

3

4

( )( )( )( )

MO

MO

MO

MO

rrrr

ψψψψ

1

2

2

2

( )( )( )

( )x

y

s

s

p

p

rrr

r

φφφ

φ

You can put two electrons, spin up and spin down, in each molecular orbital.

Page 12: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals

The first approximation for the many electron wave function of a molecule is an antisymmetrized product of molecular orbitals. The energy of this wave function should be evaluated using the electronic Hamiltonian.

1 1 1 1 , 1

1 21

1 ,

( ) ( ) ( )( )1( , )

!( ) ( )

MO MO MO N

MON

MO N MO N N

r r rr

r rN

r r

ψ ψ ψψ

ψ ψ

↑ ↓ ↑↑

Ψ =

↑ ↑

Page 13: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals

Calculate the energy of a molecular orbital using the electronic Hamiltonian.

1 1 1 2 2( , ) , , , ,N MO MO MO MOr r ψ ψ ψ ψΨ = ↑ ↓ ↑ ↓

2 22 22

, 0 0 02 4 4 4A A B

elec ii i A i j A Be iA ij AB

Z e Z Z eeHm r r rπε πε πε< <

= − ∇ − + +∑ ∑ ∑ ∑

elecHE

Ψ Ψ=

Ψ Ψ

Page 14: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Bond potentials

Calculate the energies for different atomic distances.The minimum yields the bond length and bond strength.

elecHE

Ψ Ψ=

Ψ Ψ

Page 15: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.
Page 16: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

XPS

Page 17: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Bond angles

Find the angle that minimizes the energy.

elecHE

Ψ Ψ=

Ψ Ψ

Page 18: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Shape of a molecule

2 22 22

, 0 0 02 4 4 4A A B

elec ii i A i j A Be iA ij AB

Z e Z Z eeHm r r rπε πε πε< <

= − ∇ − + +∑ ∑ ∑ ∑

Page 19: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Shape of a molecule

http://lampx.tugraz.at/~hadley/ss1/molecules/moleculeviewer/viewer.php

In Jmol, double click to start and stop a measurement.

Page 20: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Chemical reactions

Calculate the energy at every stage of the reaction.

elecHE

Ψ Ψ=

Ψ Ψ

http://en.wikipedia.org/w

iki/File:Walden-inversion-3D

-balls.png

To calculate the speed of a chemical reaction, solve the time-dependent Schrödinger equation.

Page 21: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Chemical reactions

It is possible to calculate if the reaction is endothermic or exothermic.

elecHE

Ψ Ψ=

Ψ Ψ

C3H8 + 5 O2 → 3 CO2 + 4 H2O + Energy

+

Propane Oxygen Carbon dioxide

Water

+ →

Page 22: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

The molecular orbital can be found by:Linear Combination of Atomic Orbitals

Look for a solution to the molecular orbital Hamiltonian,

of the form,

Here φn are atomic orbitals.

Page 23: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals of H2

The molecular orbital Hamiltonian for H2 is,

What about spin?

Ar

and Br

are the positions of the protons.

1 1 , 2 1 , 3 2 , 4 2 ,H H H H

mo s A s B s A s Bc c c cψ φ φ φ φ= + + + +

Page 24: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals of H2

The time independent Schrödinger equation,

Multiply from the left by

mo moH Eψ ψ=

1 ,Hs Aφ

( )1 1 , 1 , 2 1 , 1 , 1 1 , 1 , 2 1 , 1 ,H H H H H H H Hs A mo s A s A mo s B s A s A s A s Bc H c H E c cφ φ φ φ φ φ φ φ+ + = + +

Multiply from the left by 1 ,Hs Bφ

( )1 1 , 1 , 2 1 , 1 , 1 1 , 1 , 2 1 , 1 ,H H H H H H H Hs B mo s A s B mo s B s B s A s B s Bc H c H E c cφ φ φ φ φ φ φ φ+ + = + +

Two equations with two unknowns: c1 and c2

Page 25: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals of H2

Hamiltonian matrix Overlap matrix

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1 1

2 21 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

H H H H H H H Hs A mo s A s A mo s B s A s A s A s B

H H H H H H H Hs B mo s A s B mo s B s B s A s B s B

H H c cE

c cH H

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

=

1 1* *

2 2

AA AB AA AB

AB BB AB BB

H H c S S cE

H H c S S c

=

Roothaan equations:

1 00 1

S ≈

AA BBH H=

Page 26: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals of H2

1 1*

2 2

AA AB

AB AA

H H c cE

H H c c

=

The eigenvalues and eigenfunctions are:

AA ABE H H± = ±

( ) ( ) ( )( )1 112

H HsA sBr r rψ φ φ± = ±

Both HAA and HAB are negative E+ < E-

Page 27: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Molecular orbitals of H2

( ) ( )1 11 2 1 2

2 2

( ) ( )1 1, ( ) ( )( ) ( )2 2r r

r r r rr r

ψ ψψ ψ

ψ ψ+ +

+ ++ +

↑ ↓Ψ = = ↑↓ − ↓↑

↑ ↓

In the ground state, both electrons occupy the lower energy symmetric orbital (bonding orbital).

( ) ( )( )1 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 21, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2H H H H H H H HsA sA sA sB sA sB sB sBr r r r r r r r r rφ φ φ φ φ φ φ φΨ = + + + ↑↓ − ↓↑

Use this wave function including the electron-electron interaction to calculate the bond potential.

Page 28: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Student project: Draw the Bond potential of H2

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/hmol.html

elecHE

Ψ Ψ=

Ψ Ψ

Page 29: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Student project Henögl / Pranter 2014

r0 = 0.869 AD0 = 3.18 eV

exact valuesr0 = 0.74 AD0 = 4.52 eV

Page 30: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

student project: Lang / Röthel

r0 = 0.85 AD0 = 3.63 eV

exact valuesr0 = 0.74 AD0 = 4.52 eV

Page 31: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Homonuclear diatomic molecules

All homonuclear diatomic molecules use the molecular orbitals of H2.

1 1 , 2 1 , 3 2 , 4 2 , 5 2 , 6 2 ,x x

Z Z Z Z Z Zmo s A s B s A s B p A p Bc c c c c cψ φ φ φ φ φ φ= + + + + + +

The Hamiltonian matrix is as large as the number of atomic orbitals in the molecular orbital sum.

H2, N2, O2, ...

Page 32: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Homonuclear diatomic molecules

All homonuclear diatomic molecules use the molecular orbitals of H2.

from: Blinder, Introduction to Quantum Mechanics

g → inversion symmetry

1σg < 1σu < 2σg < 2σu < 3σg ~ 1πu < 1πg < 3σu

Page 33: Orbital approximationlampx.tugraz.at/~hadley/ss1/lectures16/mar8.pdf · 1 2 79 1 1 1 2 6 79. φφ φ. ss s The determinant of an . N × N. matrix has . N! terms. 79! = 8.95 ×10.

Separtion of variablesnumber of electron pairs shared

from

: Blin

der,

Intro

duct

ion

to Q

uant

um M

echa

nics