Optimization of the reconstruction of high energetic τ leptons ...morgenst/DiplomaThesis...standard...

33
Optimization of the reconstruction of high energetic τ leptons at ATLAS Marcus Morgenstern TU Dresden January 13, 2011 !"##$%&’$()*+,%&-,,$)*.$ /01234/546 78994: Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 1 / 18

Transcript of Optimization of the reconstruction of high energetic τ leptons ...morgenst/DiplomaThesis...standard...

  • Optimization of the reconstruction of high energeticτ leptons at ATLAS

    Marcus Morgenstern

    TU Dresden

    January 13, 2011Version_05_21

    Version_05_20

    !"##$%&'$()*+,%&-,,$)*.$

    /01234/54678994:

    !"##$%&'$()*+,%&-,,$)*.$

    /01234/54678994:

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 1 / 18

  • Outline

    1 Introduction

    2 Tau reconstruction

    3 Tau identification

    4 Summary/Outlook

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 2 / 18

  • The ATLAS detector

    Figure: ATLAS detector overview

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 3 / 18

  • Standard Model of Particle Physics

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 4 / 18

  • Tau characteristics

    mτ ∼ 1.7 GeVcτ = 87µm

    Hadronic decays are wellcollimated collection of chargedand neutral pions/kaons

    Mostly 1 or 3 charged tracks

    Leading hadron reproduces τdirection well

    τ decays well understood

    Provides an excellent probe for ’New Physics’ ...

    ... if contribution of QCD background is well understood

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 5 / 18

  • Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 6 / 18

  • Tau reconstruction

    candidate [GeV]τ of TE0 10 20 30 40 50 60 70 80 90 100

    Fra

    ctio

    n of

    can

    dida

    tes

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0 10 20 30 40 50 60 70 80 90 1000

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    calo seeded only

    track seeded only

    both seeds

    ATLAS Work in Progress

    τ variables calculated for static cone size, e.g. number of tracks(∆R =

    p(∆η)2 + (∆φ)2 = 0.2)

    not optimal for τs from heavy particle decays (Lorentz Boost)

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 7 / 18

  • Dynamic cone size for tau reconstruction

    Lorentz Boost: Opening angle ∼ 1γ ⇒ ∆R ∼1

    pT

    ∆R(pτT ) determined from MC generator level→ cone size contains 90% of all τ decay products

    [GeV]leadTrkT

    p0 50 100 150 200 250 300

    R∆

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    / ndf 2χ 0.000106573 / 27

    Prob 1

    p0 0.0293881± 0.840474

    / ndf 2χ 0.000106573 / 27

    Prob 1

    p0 0.0293881± 0.840474

    MC simulation

    leadTrkT

    R = 0.04 + 0.84/p∆

    leadTrkT

    R = a/p∆fit:

    ATLAS Work in Progress

    add off-set due toresolution effects

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 8 / 18

  • Performance estimators

    Signal efficiency

    �sig =Number of reconstructed τs

    Number of generated τs

    QCD background rejection

    rbkg = 1−Number of reconstructed τs

    Number of generated jets

    reconstructed objects have to match generated particle

    acceptance cuts: ET > 10 GeV, |η| < 2.5generated jets using AntiKt algorithm with R = 0.4

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 9 / 18

    http://iopscience.iop.org/1126-6708/2008/04/063

  • Performance estimators for 1-prong τs

    [GeV]TE0 20 40 60 80 100

    effic

    ienc

    y

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    [GeV]TE0 20 40 60 80 100

    effic

    ienc

    y

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    R off-set = 0.04∆

    R off-set = 0.08∆

    R off-set = 0.12∆

    Standard tauRec

    1 prong candidates

    ATLAS Work in Progress

    (a) signal efficiency

    [GeV]TE0 20 40 60 80 100

    reje

    ctio

    n

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    [GeV]TE0 20 40 60 80 100

    reje

    ctio

    n

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15R off-set = 0.04∆

    R off-set = 0.08∆

    R off-set = 0.12∆

    Standard tauRec

    1 prong candidates

    ATLAS Work in Progress

    (b) background rejection

    Conclusion

    signal sample: Z → ττ , A → ττbackground sample: QCD dijet

    Isolation criteria are essential for high pT τs→ further optimization of tau identification required

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 10 / 18

  • Tau identification

    isolation criteria essential to gain performance

    optimization using multivariate techniques

    study of additional variables → improve tau identification by newvariables

    reference: standard tau identification [ATLAS-CONF-2010-086]

    use: cuts, Projective Likelihood, Fisher linear discriminant, BoostedDecision Trees

    simple cuts uses only 3 variables, while LLH/BDT use 7/8 variables

    optimize tau identification in different pT bins ⇒ Lorentz Boostindependent optimization for 1-prong/3-prong τs

    only both-seeded τs considered

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 11 / 18

    http://cdsweb.cern.ch/record/1298857

  • ATLAS data taking

    pp collisions @√

    s = 7TeVATLAS started data taking inNovember 2009 @√

    s = 900GeVin March 2010 switched to√

    s = 7TeVdata used in this analysis from7 TeV run

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 12 / 18

  • New identification variables - centrality fraction fcore

    coref0 0.2 0.4 0.6 0.8 1 1.2

    Nor

    mal

    ised

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    Definition

    fcore =

    P∆Ri

  • New identification var. - relative track pT over track pT

    isoltrk,Relf

    0 0.05 0.1 0.15 0.2 0.25

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    Definition

    f isoltrk,Rel =

    P∆Ri

  • New ID variables for both seeded 1-prong τs

    emR0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    #IntdtL = pb^{-1}

    coref0 0.2 0.4 0.6 0.8 1 1.2

    Nor

    mal

    ised

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    )Norm

    log(I-5 -4 -3 -2 -1 0 1 2 3 4 5

    Nor

    mal

    ised

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    coretrkf

    0 0.5 1 1.5 2 2.5

    Nor

    mal

    ised

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    -1dtL = 607.6 nb∫

    SignalBackground

    Data

    isoltrk,Relf

    0 0.05 0.1 0.15 0.2 0.25

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    -1dtL = 607.6 nb∫

    Signal

    Background

    Data

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 15 / 18

  • Background rejection vs signal efficiency, 1-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    1-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 16 / 18

  • Background rejection vs signal efficiency, 3-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    3-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 17 / 18

  • Summary/Outlook

    signal reconstruction efficiency is slightly increasing for 1-prong tausdue to better n-prong reconstruction

    but collecting more QCD background ⇒ lower background rejectionhigh-pT : QCD jets looks like taus

    new identification variables show better performance compared tostandard variables for cut based and all multivariate tau identificationmethods

    future task: understand discrepancies between Monte Carlopredictions and data

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 18 / 18

  • Backup

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 19 / 18

  • Physics with tau leptons in many areas

    Standard ModelI Measurement of W/Z production cross sectionI Discovery of Higgs bosons in H → ττ final states

    Minimal Supersymmetric Standard Model (MSSM)I h/H/A → ττ excellent discovery potentialI Searches for charged Higgs bosons: H± → τν

    Exotic scenariosI E.g. searches for heavy gauge bosons

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 20 / 18

  • Tau reconstruction

    Both seeded

    Use good quality track (pT > 6 GeV)as seed

    Candidates with ≤ 8 tracks(pT > 1 GeV) in∆R =

    p(∆η)2 + (∆φ)2 < 0.2

    Reconstruct η, φ of τ using pTweighting of tracks

    Charge consistency check

    Find matching cone jet with opening∆R = 0.4 (ET > 10 GeV, |η| < 2.5)as calo seed

    ET using cells from calo seed

    Reconstruct π0 subclusters + Energyflow algorithm

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 21 / 18

  • AntiKt jet algorithm

    jet clustering algorithmperformed in inverse momentumspace

    infrared/collinear safe

    Distance parameter

    dij = min(k2pti , k

    2ptj )

    ∆2ijR2

    (3)

    with ∆2ij = (yi − yj)2 + (φi − φj)2

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 22 / 18

  • Performance estimators for 3-prong τs

    [GeV]TE0 20 40 60 80 100

    effic

    ienc

    y

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    [GeV]TE0 20 40 60 80 100

    effic

    ienc

    y

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    R off-set = 0.04∆

    R off-set = 0.08∆

    R off-set = 0.12∆

    Standard tauRec

    3 prong candidates

    ATLAS Work in Progress

    (e) signal efficiency

    [GeV]TE0 20 40 60 80 100

    reje

    ctio

    n

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    [GeV]TE0 20 40 60 80 100

    reje

    ctio

    n

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    R off-set = 0.04∆

    R off-set = 0.08∆

    R off-set = 0.12∆

    Standard tauRec

    3 prong candidates

    ATLAS Work in Progress

    (f) background rejection

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 23 / 18

  • Boosted Decision Trees

    decision trees are well known powerfulmethod, but unstable ⇒ use boostingfor stabilisation

    Boosting

    start with unweighted events

    misclassified event gets weight

    second tree is built using new weights

    typically build some thousands of trees

    Figure: Schematic of a decision tree

    calculate scores on which one cuts as follows:

    score = 1: event lands in signal leaf

    score = -1: event lands in background leaf

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 24 / 18

  • Projective likelihood

    based on model building out of pdfs

    likelihood:

    LS,(B) =nvarsYk=0

    pS(B),k(xk(i)) (4)

    likelihood for being of signal type (for event i):

    yL(i) =LS(i)

    LS(i) + LB(i)(5)

    performs well if correlations are weak

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 25 / 18

  • Fisher linear discriminant

    linear model which projects data onhyperplane of best separation

    separation measured by distingushingmean values under consideration ofsmall variances

    unable to handle non-linearcorrelations ⇒ needs decorrelation

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 26 / 18

  • New ID variables for both seeded 3-prong τs

    )Norm

    log(I-5 -4 -3 -2 -1 0 1 2 3 4 5

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1-1

    dtL = 607.6 nb∫

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    emR0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    #IntdtL = pb^{-1}

    coretrkf

    0 0.5 1 1.5 2 2.5

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    coretrk,Relf

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    SignalBackgroundData

    )coreRel

    log(f-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    SignalBackgroundData

    isoltrk NΣ

    0 2 4 6 8 10 12 14 16 18 20

    Nor

    mal

    ised

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    [GeV]trkM0 1 2 3 4 5 6 7 8 9 10

    Nor

    mal

    ised

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0.22

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    [GeV]topoM0 2 4 6 8 10 12

    Nor

    mal

    ised

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    τtrkW

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008N

    orm

    alis

    ed0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    -1dtL = 607.6 nb∫

    SignalBackgroundData

    (a) signal efficiencyMarcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 27 / 18

  • Background rejection vs signal efficiency, 1-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    1-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    1-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    1-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    1-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 28 / 18

  • Background rejection vs signal efficiency, 3-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    3-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    3-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    3-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 30 GeVT

    p

    3-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 29 / 18

  • Background rejection vs signal efficiency, 1-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    1-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    1-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    1-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    1-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 30 / 18

  • Background rejection vs signal efficiency, 3-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    3-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    3-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    3-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 60 GeVT

    30 GeV < p

    3-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 31 / 18

  • Background rejection vs signal efficiency, 1-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0

    0.2

    0.4

    0.6

    0.8

    1

    < 100 GeVT

    60 GeV < p

    1-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 100 GeVT

    60 GeV < p

    1-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 100 GeVT

    60 GeV < p

    1-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0

    0.2

    0.4

    0.6

    0.8

    1

    < 100 GeVT

    60 GeV < p

    1-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 32 / 18

  • Background rejection vs signal efficiency, 3-prong τs

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0

    0.2

    0.4

    0.6

    0.8

    1

    < 100 GeVT

    60 GeV < p

    3-prong

    Cutsstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.2

    0.4

    0.6

    0.8

    1

    < 100 GeVT

    60 GeV < p

    3-prong

    Likelihoodstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0

    0.2

    0.4

    0.6

    0.8

    1

    < 100 GeVT

    60 GeV < p

    3-prong

    BDTstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Signal efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Bac

    kgro

    und

    reje

    ctio

    n

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    < 100 GeVT

    60 GeV < p

    3-prong

    Fisherstandard tauRec, standard tauID

    R offset = 0.08, standard tauID∆standard tauRec, new tauID

    R offset = 0.08, new tauID∆

    Marcus Morgenstern (TU Dresden) Optimization of the τ reconstruction January 13, 2011 33 / 18

    IntroductionTau reconstructionTau identificationSummary/OutlookTau Reconstruction and Identification