Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22,...

23
Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 DD DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) D*D* ψ(3 3 S 1 ) ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 )

Transcript of Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22,...

Page 1: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

Open and Hidden Charm Spectroscopy with

Klaus Peters

Ruhr-University Bochum

Beijing, August 16-22, 2004

DD

DD* ψ(11D2)

ψ(13D2)

ψ(13D3)

ψ(13D1)

ηc(11S0)

ηc(21S0)

J/ψ(13S1)

χc0(13P0)

χc1(13P1)

χc2(13P2)

h1c(11P1)

D*D*ψ(33S1)

ψ(23S1)

χc0(23P0)

χc1(23P1)

χc2(23P2)

h1c(21P1)ηc(31S0)

Page 2: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

2

K. Peters - Open and Hidden Charm Spectroscopy with Panda

The GSI Future Facility

Panda

Page 3: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

3

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Overview

The Physics Program (Panda Experiment) Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei Hypernuclei Further options

The Antiproton Facility (HESR)

Conclusions

Page 4: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

4

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Were do we stand ?

Perturbative QCD works for high Q2 or large mq

one gluon exchange

At low Q2

chiral limit mq0

Mass generation of hadrons is uncertain98% of the mass of the proton is not understood

Effective theories for the limitsbut lacking real understanding of the degrees of freedom

How to connect the regions?

Page 5: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

6

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Approach

Increase precisionmeasure static properties of well known states

Increase the database of decayssearch for unusual decay modes to gain information

Excite additional modessearch for gluonic and radial excitations of hadronssearch for gluonic excitation of the strong vacuum

Put the hadrons to the limits put the hadrons in vacuum with different baryon density

Page 6: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

7

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Level Mixing

Light quark problemthe mixing

Mixingbroad stateshigh level density

Better:narrow states

and/or lower level densitycharmed systems !

Ex

oti

c lig

ht

qq

Ex

oti

c cc

1 - - 1 - +

0 2 0 0 0 4 0 0 0M e V / c2

10 - 2

1

1 0 2

Page 7: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

8

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmonium Physics

DD

DD*

ψ(11D2)

ψ(13D2)

ψ(13D3)

ψ(13D1)

Mcc

[G

eV

/c2]

ηc(11S0)

ηc(21S0)

J/ψ(13S1)

χc0(13P0)

χc1(13P1)

χc2(13P2)

h1c(11P1)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0D*D*

ψ(33S1)

pp [G

eV

/c]

ψ(23S1)

χc0(23P0)

χc1(23P1)

χc2(23P2)

h1c(21P1)ηc(31S0)

3.4

4.1

4.8

5.5

6.3

7.1

8.0

JP=0+ 1- 1+ (0,1,2)+ 2- (1,2,3)-

… Exclusive ChannelsHelicity violationG-Parity violationHigher Fock state contributions

Open questions …

ηc – inconsistencies

ηc’ - ψ(2S) splitting

h1c – unconfirmed

Peculiar ψ(4040)

Terra incognita for 2P and 1D-States

Page 8: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

9

K. Peters - Open and Hidden Charm Spectroscopy with Panda

The X(3872)

New state discovered by Belle inBK (J/ψπ+π-), J/ψµ+µ- or e+e-

M = 3872.0 0.6 0.5 MeVΓ 2.3 MeV (90 % C.L.)

X(3872) seen also by CDF

M = 3871.4 0.7 0.4 MeV

CDF, preliminary, Bauer, QWG 2003

Belle, preliminary, hep-ex/0309032

signal region

sideband region

Page 9: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

10

K. Peters - Open and Hidden Charm Spectroscopy with Panda

3500 3520 MeV3510C

Ball

ev./

2 M

eV

100

ECM

Charmonium Physics

e+e- interactions:Only 1-- states are formedOther states only bysecondary decays moderate mass resolution

pp reactions:All states directly formedvery good mass resolution

CBallE835

1000

E 8

35

ev./

pb

c1

CBall, Edwards et al. PRL 48 (1982) 70

E835, Ambrogiani et al., PRD 62 (2000) 052002

Page 10: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

12

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmonium Physics with pp

Expect 1-2 fb-1 (like CLEO-C)pp (>5.5 GeV/c) J/ψ 107/dpp (>5.5 GeV/c) χc2 (J/ψγ 105/d

pp (>5.5 GeV/c) ηc´( 104/d|rec.?

Comparison of PANDA@HESR to E83515 GeV/c maximum mom. instead of 9 GeV/c10x higher Luminosity than achieved before charged tracks detector with magnetic field 10x smaller δp/pstable conditions dedicated high energy storage ring

Page 11: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

13

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmed Hybrids

LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states-potential

for one-gluon exchange-potential

from excited gluon flux

mHcc ~ 4.2-4.5 GeV/c2

Light charmed hybridscould be narrow if open charm decays are inaccessible or suppressed

important <r2> and rBreakup

3

3.5

4

1 2

R/r0

V(R)/GeV

J/ψ

χc

ψ‘

Hcc

DD

Page 12: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

14

K. Peters - Open and Hidden Charm Spectroscopy with Panda

0 2 4 6 8 12 1510

p Momentum [GeV/c]

Mass [GeV/c2]

Two bodythresholds

Molecules

GluonicExcitations

qq Mesons

1 2 3 4 5 6

Hybrids

Hybrids+Recoil

Glueball

Glueball+Recoil

ΛΛΣΣΞΞ

ΛcΛc

ΣcΣc

ΞcΞc

ΩcΩcΩΩ DDDsDs

qqqq ccqq

nng,ssg ccg

ggg,gg

light qqπ,ρ,ω,f2,K,K*

ccJ/ψ, ηc, χcJ

nng,ssg ccg

ggg

Accessible Charmed Hadrons at PANDA @ GSI

Other exotics with identical decay channels same region

conventionalcharmonium

exoticcharmonium

Page 13: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

17

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Ds[J][*]± Pairproduction in pp Annihilation

Associated Pair m/MeV/c2 JP Channel (+cc) Final State

Ds(1968.5) Ds (1968.5) 3937.0 0+,1-,2+,3-,4+ Ds+Ds

- 2K-2K++-

Ds (1968.5) Ds*(2112.4) 4080.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ Ds

+(Ds-) 2K-2K++-

Ds*(2112.4) Ds

*(2112.4) 4224.8 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds+)(Ds

-) 2K-2K++-

Ds (1968.5) DsJ*(2317.5) 4286.0 0-,1+,2-,3+,4- Ds

+(Ds-0) 2K-2K++-0

Ds (1968.5) DsJ(2458.5) 4427.0 0-,1-,1+,2-,2+,3-,3+,4-,4+ Ds+((Ds

-)0) 2K-2K++-0

Ds*(2112.4) DsJ

*(2317.5) 4429.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ (Ds+)(Ds

-0) 2K-2K++-0

Ds (1968.5) Ds1(2535.4) 4503.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ Ds+(D*-K0) 2K-K+KS+2-(0)

Ds (1968.5) DsJ*(2572.4) 4540.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ Ds

+(D0K-) 2K-2K++-(0)

Ds*(2112.4) DsJ(2458.5) 4570.9 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds

+)((Ds-)0) 2K-2K++-0

DsJ*(2317.5) DsJ

*(2317.5) 4635.0 0+,1-,2+,3-,4+ (Ds+0)(Ds

-0) 2K-2K++-20

Ds*(2112.4) Ds1(2535.4) 4647.9 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds

+)(D*-K0) 2K-K+KS+2-(0)

Ds*(2112.4) DsJ

*(2572.4) 4684.4 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds+)(D0K-) 2K-2K++-(0)

Ds (1968.5) D1*(2770) 4738.5 0-,1-,1+,2-,2+,3-,3+,4-,4+ Ds

+(Ds-+-) 2K-2K+2+2-

DsJ*(2317.5) DsJ(2458.5) 4776.0 0-,1-,1+,2-,2+,3-,3+,4-,4+ (Ds

+0)((Ds-)0) 2K-2K++-20

Ds (1968.5) D2(2870) 4838.5 0+,1-,1+,2-,2+,3-,3+,4-,4+ Ds+((Ds

-)+-) 2K-2K+2+2-

DsJ*(2317.5) Ds1(2535.4) 4852.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ (Ds

+0)(D*-K0) 2K-K+KS+2-(1-2)0

Ds*(2112.4) D1

*(2770) 4882.4 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds+)(Ds

-+-) 2K-2K+2+2-

DsJ*(2317.5) DsJ

*(2572.4) 4889.9 0-,1-,1+,2-,2+,3-,3+,4-,4+ (Ds+0)(D0K-) 2K-2K++-(1-2)0

DsJ(2458.5) DsJ(2458.5) 4917.0 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ ((Ds+)0)((Ds

-)0) 2K-2K++-20

Ds*(2112.4) D2(2870) 4982.4 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (Ds

+)((Ds-)+-) 2K-2K+2+2-

DsJ(2458.5) Ds1(2535.4) 4993.9 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ ((Ds+)0)(D*-K0) 2K-K+KS+2-(1-2)0

DsJ(2458.5) DsJ*(2572.4) 5030.9 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ ((Ds

+)0)(D0K-) 2K-2K++-(1-2)0

Ds1(2535.4) Ds1(2535.4) 5070.8 0-,0+,1-,1+,2-,2+,3-,3+,4-,4+ (D*+K0)(D*-K0) K-K+2KS2+2-(0-2)0

Page 14: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

18

K. Peters - Open and Hidden Charm Spectroscopy with Panda

The Antiproton Facility - HESR

Antiproton production similar to CERN

HESR = High Energy Storage RingProduction rate 107/sPbeam = 1.5 - 15 GeV/c

Nstored = 5 x 1010 p

Gas-Jet/Pellet/Wire Target

High luminosity modeLuminosity = 2 x 1032 cm-2s-1

δp/p ~ 10-4 (stochastic cooling)

High resolution modeδp/p ~ 10-5 (electron cooling)Luminosity = 1031 cm-2s-1

Page 15: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

19

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Proposed Detector (Overview)

High RatesTotal σ ~ 55 mbpeak > 107 int/s

Vertexing(σp,KS,Λ,…)

Charged particle ID(e±,μ±,π±,p,…)

Magnetic tracking

Elm. Calorimetry(γ,π0,η)

Forward capabilities(leading particles)

Sophisticated Trigger(s)

Page 16: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

20

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Summary and Outlook

It’s an amazing time in charm spectroscopymany new states – but no coherent picture

Where are gluonic excited charmonia (hybrids)spectrum, widths and decay channels

What are the new DsJ states and the X(3872)what are their properties like width and decay channels

Interaction with nuclear mattermass shifts, broadening and attenuation

Only high precision experiments can finally

help to solve the puzzle like Panda @ HESR @ GSI

Page 17: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

21

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Backup Slides

Page 18: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

22

K. Peters - Open and Hidden Charm Spectroscopy with Panda

S1

S2

S=S1+S2

J=L+S

P=(-1)L+1

C=(-1)L+S

L

Simplest Hybrids

S-Wave+Gluon (qq)8g with ()8=coloured

1S0 3S1 combined with a 1+ or 1- gluon

Gluon 1– (TM) 1+(TE)

1S0, 0–+ 1++ 1––

3S1, 1–– 0+- 0–+

1+- 1–+

2+- 2–+Exotic JPC cannot! be formed by qq

Page 19: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

23

K. Peters - Open and Hidden Charm Spectroscopy with Panda

LQCD ccg 1-+ vs. cc 1-- (J/ψ)

1-+ m(ccg) Model Group Reference

4390 ±80 ±200 isotropic MILC97 PRD56(1997)7039

4317 ±150 isotropic MILC99 NPB93Supp(1999)264

4287 isotropic JKM99 PRL82(1999)4400

4369 ±37 ±99 anisotropic ZSU02 hep-lat/0206012

(1-+,1--) m(ccg)- m(cc)

1340 ±80 ±200 isotropic MILC97 PRD56(1997)7039

1220 ±150 isotropic MILC99 NPB93Supp(1999)264

1323 ±130 anisotropic CP-PACS99 PRL82(1999)4396

1190 isotropic JKM99 PRL82(1999)4400

1302 ±37 ±99 anisotropic ZSU02 hep-lat/0206012

Page 20: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

24

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmed Hybrid Level Scheme

1-- (0,1,2)-+ < 1++ (0,1,2)+-

JKM, NPB 83suppl(2000)304 and Manke, PRD57(1998)3829

L-SplittingΔm ~ 100-250 MeV/c2

for 1-+ to 0+-

S-Splittings Page thesis,1995 and PRD 35(1987)16684.14 (0-+) to 4.52 GeV/c2 (2-+)

consistent w/LQCDJKM, NPB 86suppl(2000)397, PLB478(2000) 151

0-+ 4.14

1-+ 4.37

2-+ 4.52

1-- 4.48

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

0+- 4.47

1+- 4.70

2+- 4.85

1++ 4.81

DD**

Page 21: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

25

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmed Hadrons in Nuclear Matter

Partial restoration of chiral symmetry in nuclear matter

Light quarks are sensitive to quark condensate

Evidence for mass changes of pions and kaons has been deduced previously:

deeply bound pionic atoms(anti-)kaon yield and phase

space distribution

D-Mesons are the QCD analogue of the H-atom.

chiral symmetry to be studied on a single light quark

Hayaski, PLB 487 (2000) 96Morath, Lee, Weise, priv. Comm.

D

50 MeV

D

D+

vacuumvacuum nuclear mediumnuclear medium

K

25 MeV

100 MeV

K+

K

Page 22: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

26

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmonium in the Nuclei

Lowering of the D+D- massallow charmonium states to decay into this channel, thus resulting in a dramatic increase of width

ψ(1D) Γ=2040 MeV ψ(2S) Γ=0,322,7 MeV

Experiment:Dilepton-Channels and/or highly constrained hadronic channels

IdeaStudy relative changes ofyield and width of the charmonium states 3

GeV/c2 Mass

3.2

3.4

3.6

3.8

4

(13D1)

(13S1)

(23S1)

c(11S0)

(33S1)

c2(13P2)

c1(13P1)

c1(13P0)

DD3,74

3,64

3,54

vacuum

10

20

Page 23: Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.

27

K. Peters - Open and Hidden Charm Spectroscopy with Panda

Charmonium mass shift in nuclear matter

Quantum

numbers

QCD

2nd Stark eff.

Potential

model

QCD

sum rules

Effects of

DD loop

ηc 0-+ –8 MeV [1] –5 MeV [4]

J/ψ 1-- –8 MeV [1] -10 MeV [3] –7 MeV [4] < 2 MeV [5]

c0,1,20,1,2++ -40 MeV [2] -60 MeV [2]

ψ(3686) 1-- -100 MeV [2] < 30 MeV [2]

ψ(3770) 1-- -140 MeV [2] < 30 MeV [2]

[1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355

[2] Lee, nucl-th/0310080

[3] Brodsky et al, PRL 64(1990)1011

[4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396

[5] Lee, Ko PRC 67(2003)038202