On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D...

22
On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials Domingo Gomez University of Cantabria Domingo Gomez University of Cantabria On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Transcript of On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D...

Page 1: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

On the Multidimensional Distribution of NumbersGenerated by Dickson Polynomials

Domingo Gomez

University of Cantabria

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 2: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Notation

Let p be a prime number, ep(x) = exp(2πIx/p) and Fp the finitefield with p elements,{0, . . . , p − 1}. X1, . . . ,Xk will denoteindeterminates and Fp[X1, . . . ,Xk ] will denote the ring ofpolynomials with coefficients in Fp over X1, . . . ,Xk .

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 3: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Problem

Generate sequences (un) un ∈ Fkp , with good pseudorandom

properties.

I Good distribution properties;

I Difficult to predict;

I Easy to generate.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 4: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Pseudorandom Number Generators

Each element, un = (un,1, . . . , un,k) is defined by the followingrecurrence,

un+1,i = Fi (un,1, . . . , un,k), i = 1, . . . , k , n = 0, 1, . . .

For short, we will write,

un = F(un−1)

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 5: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Pseudorandom Number Generators

Also, we introduce the following notation,

F(n+1)i (X1, . . . ,Xk) = Fi (F

(n)1 (X1, . . . ,Xk), . . . ,F

(n)k (X1, . . . ,Xk)),

F (n) = {F (n)1 , . . . ,F

(n)k }.

Another way of defining the sequence (un) is,

un = F (n)(u0).

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 6: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Results in the Multivariate Case

I NonLinear PRNG of Higher orders (Ostafe, Pelican,Shparlinski);

I Recursive PRNG based on Rational Functions (Ostafe,Shparlinski) generalizes Inversive Generator(Niederreiter,Rivat);

I Multivariate generalisation of the Power Generator (Ostafe,Shparlinski).

I Multivariate version of the Dickson Generator?

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 7: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Dickson Polynomials

Denoted by De(X , α)

De+2(X , α) = XDe+1(X , α)− αDe(X , α)

with

D0(X , α) = 2, D1(X , α) = X .

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 8: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Properties of Dickson Polynomials

I De(X + αX−1, α) = X e + αeX−e .

I Df (De(X + αX−1, α), αe) = X ef + αef X−ef .

I De(x1, x21α) = xe

1De(1, α).

I If gcd(e, p2 − 1) = 1, then De(X , α) is a permutationalpolynomial.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 9: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Construction for k = 2

Take gcd(e, p2 − 1) = 1, define F = {F1(X1,X2),F2(X2))} where

F1(X1,X2) = De(X1,X2),

F2(X2) = X e2 .

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 10: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Construction for k = 2

Now, we notice that

F(n)1 (X1,X2) = Den(X1,X2),

F(n)2 (X2) = X en

2 .

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 11: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

We start defining,

Sa1,a2(N) =N−1∑n=0

ep(a1un,1 + a2un,2)

and notice that∣∣∣∣∣Sa1,a2(N)−N−1∑n=0

ep(a1un+k,1 + a2un+k,2)

∣∣∣∣∣ ≤ 2k.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 12: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

For any set of integers K whose maximum is K ≥ 1,

(#K)|Sa1,a2(N)| ≤W + (#K)K ,

where

W =N−1∑n=0

∣∣∣∣∣∑k∈K

ep (a1un+k,1 + a2un+k,2)

∣∣∣∣∣ .

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 13: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

We use the Cauchy inequality to obtain

W 2 ≤ NN−1∑n=0

∣∣∣∣∣∑k∈K

ep (a1un+k,1 + a2un+k,2)

∣∣∣∣∣2

≤ N∑k,`∈K

∑x1,x2∈Fp

ep(

a1(Dek (x1, x2)− De`(x1, x2))− a2(xek2 − xe`

2 ))

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 14: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

To bound this sum∣∣∣∣∣∣∑

x1,x2∈Fp

ep(

a1(Dek (x1, x2)− De`(x1, x2))− a2(xek2 − xe`

2 ))∣∣∣∣∣∣ .

we notice that the following application,

x2 7→ x21x2,

is invertible if x1 6= 0. Making that substitution, we also notice that

Dek (x1, x2x21 ) = xek

1 Dek (1, x2), De`(x1, x2x21 ) = xe`

1 De`(1, x2).

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 15: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

A Technical Lemma

Lemma (Friedlander,Hansen,Shparlinski)

For any set K ⊂ Zt , containing only units of Zt of cardinality K,any fixed δ > 0 and any integer h ≥ tδ there exists an integer rgcd(r , t) = 1, such that the number of solutions of the congruenceLr (h),

rk ≡ y (mod t), k ∈ K, 0 ≤ y ≤ h − 1,

satisfies that is greater than certain constant times Kh/t.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 16: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

So, we apply last lemma with

t = p−1, K′ = {ek (mod p−1) | k = 0, 1, . . .}, h = p3/4T−1/2

where T is the multiplicative order of e modulo p − 1. Now, applythe transformation x1 7→ x r

1 here∑x1,x2∈Fp

ep(a1(x rek1 Drek (1, x2)− x re`

1 Dre`(1, x2))

− a2((x2r1 x2)e

k − (x2r1 x2)e

`))

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 17: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

So, we apply last lemma with

t = p−1, K′ = {ek (mod p−1) | k = 0, 1, . . .}, h = p3/4T−1/2

where T is the multiplicative order of e modulo p − 1. Now, applythe transformation x1 7→ x r

1 here∑x1,x2∈Fp

ep(a1(xh11 Drek (1, x2)− xh2

1 Dre`(1, x2))

− a2(x2h11 (x2)e

k − x2h21 (x2)e

`))

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 18: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Exponential Sums with This Generator

If k = ` then we use the trivial bound, otherwise, we use the Weilbound and this gives (#K)2hp3/2 + #Kp2. Substituting,

|Sa1,a2(N)| = O(N1/2T−1/4p9/8).

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 19: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Remarks

I The previous bound is not trivial when N ≥ p;

I The multiplicative order of e modulo p − 1 must be large aswell;

I A bound for the exponential sum gives a bound for thediscrepancy using standard techniques. In this case,O(N−1/2T−1/4p9/8 log2(N)).

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 20: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Further Remarks

The multivariate power generator admits a more general form thatsimple monomials, with multipliers and shifts. Also the bounds forexponential sums are better than in this case.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 21: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Even Further Remarks

The generalisation for k ≥ 3 should be done using multivariateDickson polynomials. The construction is very similar butunfortunately there are some technical difficulties in the proof ofbounds for the corresponding exponential sums.

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials

Page 22: On the Multidimensional Distribution of Numbers Generated ... · e(X + X 1; ) = Xe + eX e. I D f (D e(X + X 1; ); e) = Xef + ef X ef: I D e(x 1;x2 1 ) = xe 1 D e(1; ): I If gcd(e;p2

Open Problems

These are the open problems

I Is there a way to improve the bound of the exponential sum?

I Is there a generalisation for pseudorandom number generatorswith Dickson polynomials for k > 2?

I Is it possible to add multipliers and still get a good lowerbound?

Domingo Gomez University of Cantabria

On the Multidimensional Distribution of Numbers Generated by Dickson Polynomials