On set-theoretic solutions to the Yang-Baxter equationlebed/Lebed Mulhouse.pdf · On set-theoretic...

of 52 /52
On set-theoretic solutions to the Yang-Baxter equation Victoria LEBED (Nantes) with Leandro VENDRAMIN (Buenos Aires) Mulhouse, October 21, 2015

Embed Size (px)

Transcript of On set-theoretic solutions to the Yang-Baxter equationlebed/Lebed Mulhouse.pdf · On set-theoretic...

  • On set-theoretic solutionsto the Yang-Baxter equation

    Victoria LEBED (Nantes)with Leandro VENDRAMIN (Buenos Aires)

    Mulhouse, October 21, 2015

  • 1 Yang-Baxter equation

    ✓ V: vector space,✓ σ : V⊗2→V⊗2.

    Yang-Baxter equation (YBE)

    σ1 ◦σ2 ◦σ1 = σ2 ◦σ1 ◦σ2 : V⊗3→V⊗3

    where σ1 = σ⊗ IdV , σ2 = IdV⊗σ.

    Origins:➺ factorization condition for thedispersion matrix in the 1-dim. n-bodyproblem (McGuire, Yang, 60’);➺ partition function for exactly solvablelattice models (Baxter, 70’).

  • 1 Set-theoretic Yang-Baxter equation

    ✓ V: set,✓ σ : V×2→V×2

    Yang-Baxter equation (YBE)

    σ1 ◦σ2 ◦σ1 = σ2 ◦σ1 ◦σ2 : V×3→ V×3

    where σ1 = σ× IdV , σ2 = IdV×σ.

    Origins: Drinfel ′d, 1990.

  • 1 Set-theoretic Yang-Baxter equation

    ✓ V: set,✓ σ : V×2→V×2, (x,y) 7→ (xy,xy)

    Yang-Baxter equation (YBE)

    σ1 ◦σ2 ◦σ1 = σ2 ◦σ1 ◦σ2 : V×3→ V×3

    where σ1 = σ× IdV , σ2 = IdV×σ.

    Origins: Drinfel ′d, 1990.

    (V,σ) is called a braided set,with a braiding σ.

    σ ←→

    x y

    xy xy

    =

    (Reidemeister III)

  • 1 Set-theoretic Yang-Baxter equation

    ✓ V: set,✓ σ : V×2→V×2, (x,y) 7→ (xy,xy)

    Yang-Baxter equation (YBE)

    σ1 ◦σ2 ◦σ1 = σ2 ◦σ1 ◦σ2 : V×3→ V×3

    where σ1 = σ× IdV , σ2 = IdV×σ.

    Origins: Drinfel ′d, 1990.

    (V,σ) is called a braided set,with a braiding σ.

    Left non-degenerate braided set:for all y, x 7→ xy is a bijection X→X.

    σ ←→

    x y

    xy xy

    =

    (Reidemeister III)

    y ·̃ x y

    x ·y x

  • 1 Set-theoretic Yang-Baxter equation

    ✓ V: set,✓ σ : V×2→V×2, (x,y) 7→ (xy,xy)

    Yang-Baxter equation (YBE)

    σ1 ◦σ2 ◦σ1 = σ2 ◦σ1 ◦σ2 : V×3→ V×3

    where σ1 = σ× IdV , σ2 = IdV×σ.

    Origins: Drinfel ′d, 1990.

    (V,σ) is called a braided set,with a braiding σ.

    Left non-degenerate braided set:for all y, x 7→ xy is a bijection X→X.

    Birack: left and right non-degeneratebraided set with invertible σ.

    σ ←→

    x y

    xy xy

    =

    (Reidemeister III)

    y ·̃ x y

    x ·y x

  • 2 Structure (semi)group

    ✓ X: set,✓ σ : X×2→X×2, (x,y) 7→ (xy,xy).

    Structure (semi)group of (V,σ): (S)GX,σ = 〈X | xy=xyxy 〉

  • 2 Structure (semi)group

    ✓ X: set,✓ σ : X×2→X×2, (x,y) 7→ (xy,xy).

    Structure (semi)group of (V,σ): (S)GX,σ = 〈X | xy=xyxy 〉

    ➺ Captures properties of σ.

  • 2 Structure (semi)group

    ✓ X: set,✓ σ : X×2→X×2, (x,y) 7→ (xy,xy).

    Structure (semi)group of (V,σ): (S)GX,σ = 〈X | xy=xyxy 〉

    ➺ Captures properties of σ.

    ➺ A source of interesting groups and algebras:Theorem: If (X,σ) is a finite RI-compatible birack withσ2 = Id, then

    ✓ SGX,σ is of I-type, cancellative, Öre;✓ GX,σ is solvable, Garside;✓ kSGX,σ is Koszul, noetherian, Cohen-Macaulay,

    Artin-Schelter regular(Manin, Gateva-Ivanova & Van den Bergh, Etingof-Schedler-Soloviev, Jespers-Okniński, Chouraqui, 80’-. . . ).

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z) ⇔ σ� =

    x y

    y x� y is abraidingon X

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

    (Joyce, Matveev, 1982)Applications:

    ➺ invariants of knots and knotted surfaces;➺ Hopf algebra classification;➺ study of large cardinals.

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

    (Joyce, Matveev, 1982)Applications:

    ➺ invariants of knots and knotted surfaces;➺ Hopf algebra classification;➺ study of large cardinals.

    Examples:➺ x� y= f(x) for any f : X→X;

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

    (Joyce, Matveev, 1982)Applications:

    ➺ invariants of knots and knotted surfaces;➺ Hopf algebra classification;➺ study of large cardinals.

    Examples:➺ x� y= f(x) for any f : X→X;➺ group X, x� y= y−1xy.

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ� =

    x y

    y x� y is abraidingon X

    ⇔ σ� is LND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

    (Joyce, Matveev, 1982)Applications:

    ➺ invariants of knots and knotted surfaces;➺ Hopf algebra classification;➺ study of large cardinals.

    Examples:➺ x� y= f(x) for any f : X→X;➺ group X, x� y= y−1xy.

    GX,σ� = 〈X | x� y= y−1xy 〉.

  • 3 Self-distributive structures

    Shelf: set X & � : X×X→X s.t.

    (x� y)� z= (x� z)� (y� z)

    Rack: & for all y, x 7→ x� y bijective.

    Quandle: & x� x= x.

    ⇔ σ�′ =

    x y

    y� x x is abraidingon X

    ⇔ σ� is RND⇔ (X,σ�) is a birack

    ⇔ (x,x)σ�7→ (x,x).

    (Joyce, Matveev, 1982)Applications:

    ➺ invariants of knots and knotted surfaces;➺ Hopf algebra classification;➺ study of large cardinals.

    Examples:➺ x� y= f(x) for any f : X→X;➺ group X, x� y= y−1xy.

    GX,σ� = 〈X | x� y= y−1xy 〉.

  • 4 Cycle sets

    Cycle set: set X & · : X×X→X s.t.

    (x ·y) · (x · z) = (y ·x) · (y · z)

    & for all x, y 7→ x ·y bijective.

    ⇔ σ· =

    y ·x y

    x ·y x is a LNDbraidingon X

    with σ2· = Id

  • 4 Cycle sets

    Cycle set: set X & · : X×X→X s.t.

    (x ·y) · (x · z) = (y ·x) · (y · z)

    & for all x, y 7→ x ·y bijective.

    Non-degenerate CS:& x 7→ x ·x bijective.

    ⇔ σ· =

    y ·x y

    x ·y x is a LNDbraidingon X

    with σ2· = Id

    ⇔ σ· is RND⇔ (X,σ·) is a birack

  • 4 Cycle sets

    Cycle set: set X & · : X×X→X s.t.

    (x ·y) · (x · z) = (y ·x) · (y · z)

    & for all x, y 7→ x ·y bijective.

    Non-degenerate CS:& x 7→ x ·x bijective.

    ⇔ σ· =

    y ·x y

    x ·y x is a LNDbraidingon X

    with σ2· = Id

    ⇔ σ· is RND⇔ (X,σ·) is a birack

    (Etingof-Schedler- Soloviev 1999, Rump 2005)

    Applications: (semi)group theory.

  • 4 Cycle sets

    Cycle set: set X & · : X×X→X s.t.

    (x ·y) · (x · z) = (y ·x) · (y · z)

    & for all x, y 7→ x ·y bijective.

    Non-degenerate CS:& x 7→ x ·x bijective.

    ⇔ σ· =

    y ·x y

    x ·y x is a LNDbraidingon X

    with σ2· = Id

    ⇔ σ· is RND⇔ (X,σ·) is a birack

    (Etingof-Schedler- Soloviev 1999, Rump 2005)

    Applications: (semi)group theory.

    Examples: x ·y= f(y) for any f : X∼

    →X.

  • 4 Cycle sets

    Cycle set: set X & · : X×X→X s.t.

    (x ·y) · (x · z) = (y ·x) · (y · z)

    & for all x, y 7→ x ·y bijective.

    Non-degenerate CS:& x 7→ x ·x bijective.

    ⇔ σ· =

    y ·x y

    x ·y x is a LNDbraidingon X

    with σ2· = Id

    ⇔ σ· is RND⇔ (X,σ·) is a birack

    (Etingof-Schedler- Soloviev 1999, Rump 2005)

    Applications: (semi)group theory.

    Examples: x ·y= f(y) for any f : X∼

    →X.

    GX,σ· = 〈X | (x ·y)x= (y ·x)y 〉.

  • 5 Monoids

    For a monoid (X,⋆,1),the associativity of ⋆ ⇔ σ⋆ =

    x y

    1 x⋆y is a

    braiding

    on X

    (with σ2⋆= σ⋆)

  • 5 Monoids

    For a monoid (X,⋆,1),the associativity of ⋆

    X is a group

    ⇔ σ⋆ =

    x y

    1 x⋆y is a

    braiding

    on X

    (with σ2⋆= σ⋆)

    ⇒ σ⋆ is LND

  • 5 Monoids

    For a monoid (X,⋆,1),the associativity of ⋆

    X is a group

    ⇔ σ⋆ =

    x y

    1 x⋆y is a

    braiding

    on X

    (with σ2⋆= σ⋆)

    ⇒ σ⋆ is LND

    (L. 2013)

  • 5 Monoids

    For a monoid (X,⋆,1),the associativity of ⋆

    X is a group

    ⇔ σ⋆ =

    x y

    1 x⋆y is a

    braiding

    on X

    (with σ2⋆= σ⋆)

    ⇒ σ⋆ is LND

    (L. 2013)

    One has a semigroup isomorphism

    SGX,σ⋆∼

    →X,

    x1 · · ·xk 7→ x1 ⋆ · · · ⋆xk.

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Proof:

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Proof:

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Proof:

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Proof:

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Motto: �σ is often simpler than σ,but encodes its important properties.

  • 6 Associated shelf

    Fix a LND braided set (X,σ).Proposition (L.-V. 2015): one has a shelf (X,�σ), where

    x

    y

    (y ·x)y =: x�σ y

    y ·x

    Motto: �σ is often simpler than σ,but encodes its important properties.

    Proposition (L.-V. 2015):

    ➺ (X,�σ) is a rack ⇔ σ is invertible;➺ (X,�σ) is a trivial (x�σ y= x) ⇔ σ2 = Id;➺ x�σ x= x ⇔ σ(x ·x,x) = (x ·x,x).

  • 7 Guitar map

    J(n) : X×n∼

    →X×n,

    (x1, . . . ,xn) 7→ (xx2···xn1 , . . . ,x

    xnn−1,xn),

    where xxi+1···xni = (. . . (xxi+1i ) . . .)

    xn.

    x1 ··· xn

    J1(x)

    J2(x)

    ...

    Jn(x)

  • 7 Guitar map

    J(n) : X×n∼

    →X×n,

    (x1, . . . ,xn) 7→ (xx2···xn1 , . . . ,x

    xnn−1,xn),

    where xxi+1···xni = (. . . (xxi+1i ) . . .)

    xn.

    x1 ··· xn

    J1(x)

    J2(x)

    ...

    Jn(x)

    x2 x3 x4 x5

    J2(x)=

    xx3x4x52

  • 7 Guitar map

    J(n) : X×n∼

    →X×n,

    (x1, . . . ,xn) 7→ (xx2···xn1 , . . . ,x

    xnn−1,xn),

    where xxi+1···xni = (. . . (xxi+1i ) . . .)

    xn.

    x1 ··· xn

    J1(x)

    J2(x)

    ...

    Jn(x)

    x2 x3 x4 x5

    J2(x)=

    xx3x4x52

    Proposition (L.-V. 2015): Jσi = σ′iJ , where σ

    ′ = σ ′�σ.

    σ ′ =

    x y

    y�σ x x

  • 7 Guitar map

    J(n) : X×n∼

    →X×n,

    (x1, . . . ,xn) 7→ (xx2···xn1 , . . . ,x

    xnn−1,xn),

    where xxi+1···xni = (. . . (xxi+1i ) . . .)

    xn.

    x1 ··· xn

    J1(x)

    J2(x)

    ...

    Jn(x)

    x2 x3 x4 x5

    J2(x)=

    xx3x4x52

    Proposition (L.-V. 2015): Jσi = σ′iJ , where σ

    ′ = σ ′�σ.

    Corollary: σ and σ ′ yield isomorphic Bn-actions on X×n.Warning: In general, (X,σ)≇ (X,σ ′) as braided sets!

  • 8 RI-compatibility

    RI-compatible braiding: ∃t : X∼

    →X s.t. σ(t(x),x) = (t(x),x).

    x

    xt(x) =

    x

    x=

    x

    xt−1(x)

    (Reidemeister I)

  • 8 RI-compatibility

    RI-compatible braiding: ∃t : X∼

    →X s.t. σ(t(x),x) = (t(x),x).

    x

    xt(x) =

    x

    x=

    x

    xt−1(x)

    (Reidemeister I)

    Examples:➺ for a rack, it means x� x= x (here t(x) = x);

  • 8 RI-compatibility

    RI-compatible braiding: ∃t : X∼

    →X s.t. σ(t(x),x) = (t(x),x).

    x

    xt(x) =

    x

    x=

    x

    xt−1(x)

    (Reidemeister I)

    Examples:➺ for a rack, it means x� x= x (here t(x) = x);➺ for a cycle set, it means the non-degeneracy (here

    t(x) = x ·x).

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle︸ ︷︷ ︸

    J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

    J(xy) = J(x)yJ(y)

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle︸ ︷︷ ︸

    J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

    J(xy) = J(x)yJ(y)

    (x1, . . . ,xn)y =

    (xy1 , . . . ,x

    yn)

    x y

    xy

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle︸ ︷︷ ︸

    J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

    J(xy) = J(x)yJ(y)

    (x1, . . . ,xn)y =

    (xy1 , . . . ,x

    yn)

    x y

    xy

    (2) If (X,σ) is an RI-compatible birack, then the maps

    K×nJ(n) induce a bijective 1-cocycle GX,σ∼

    →GX,σ ′ ,

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle︸ ︷︷ ︸

    J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

    J(xy) = J(x)yJ(y)

    (x1, . . . ,xn)y =

    (xy1 , . . . ,x

    yn)

    x y

    xy

    (2) If (X,σ) is an RI-compatible birack, then the maps

    K×nJ(n) induce a bijective 1-cocycle GX,σ∼

    →GX,σ ′ , where

    ➺ J(n) is extended to (X⊔X−1)×n by

    x1 x2−1 x3

    −1

    y1

    y2−1

    y3−1

  • 9 Structure group via associated shelf

    Theorem (L.-V. 2015): (1) The guitar maps induce a

    bijective 1-cocycle︸ ︷︷ ︸

    J : SGX,σ∼

    → SGX,σ ′ , where σ′ = σ ′

    �σ.

    J(xy) = J(x)yJ(y)

    (x1, . . . ,xn)y =

    (xy1 , . . . ,x

    yn)

    x y

    xy

    (2) If (X,σ) is an RI-compatible birack, then the maps

    K×nJ(n) induce a bijective 1-cocycle GX,σ∼

    →GX,σ ′ , where

    ➺ J(n) is extended to (X⊔X−1)×n by

    ➺ K(x) = x, K(x−1) = t(x)−1.x1 x2

    −1 x3−1

    y1

    y2−1

    y3−1

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

    ✓ For a cycle set (X, ·)➺ x�σ· y= x,

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

    ✓ For a cycle set (X, ·)➺ x�σ· y= x,

    ➺ J : σ·↔ flipx y

    y x,

    ➺ (S)GX,σ ′· is the free abelian (semi)group on X.

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

    ✓ For a cycle set (X, ·)➺ x�σ· y= x,

    ➺ J : σ·↔ flipx y

    y x,

    ➺ (S)GX,σ ′· is the free abelian (semi)group on X.

    ✓ For a group (X,⋆,1)➺ x�σ⋆ y= y,

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

    ✓ For a cycle set (X, ·)➺ x�σ· y= x,

    ➺ J : σ·↔ flipx y

    y x,

    ➺ (S)GX,σ ′· is the free abelian (semi)group on X.

    ✓ For a group (X,⋆,1)➺ x�σ⋆ y= y,➺ J(x1, . . . ,xn−1,xn) = (x1 ⋆ · · · ⋆xn, . . . , xn−1 ⋆xn, xn),

  • 10 Associated shelf: examples

    ✓ For a rack (X,�)➺ �σ�=�,➺ J : σ�↔ σ

    ′�.

    ✓ For a cycle set (X, ·)➺ x�σ· y= x,

    ➺ J : σ·↔ flipx y

    y x,

    ➺ (S)GX,σ ′· is the free abelian (semi)group on X.

    ✓ For a group (X,⋆,1)➺ x�σ⋆ y= y,➺ J(x1, . . . ,xn−1,xn) = (x1 ⋆ · · · ⋆xn, . . . , xn−1 ⋆xn, xn),

    ➺ J : σ⋆↔

    x y

    x x,

    ➺ SGX,σ ′⋆

    →X, x1 · · ·xk 7→ x1.

    YBE: preliminariesFamilies of solutionsAssociated shelves