Numerical Analyses for ElectronagneticsNumerical Analyses for Electronagnetics Takuichi Hirano (RA)...

25
June 5, 2002 Tokyo Institute of Technology No. 1 MoM Numerical Analyses for Electronagnetics Takuichi Hirano (RA) Ando & Hirokawa lab.

Transcript of Numerical Analyses for ElectronagneticsNumerical Analyses for Electronagnetics Takuichi Hirano (RA)...

  • June 5, 2002 Tokyo Institute of Technology

    No. 1MoM

    Numerical Analysesfor Electronagnetics

    Takuichi Hirano (RA)Ando & Hirokawa lab.

  • June 5, 2002 Tokyo Institute of Technology

    No. 2MoM

    Differential Equations

    iEH

    HE

    =+×∇

    =+×∇

    ωε

    ωµ

    j

    jand

    0Maxwell’s Equation:

    0or

    0

    22

    22

    =+∇

    =+∇

    HH

    EE

    k

    k

    qk

    k

    −=+∇

    −=+∇

    φφ

    µ

    22

    22

    andiAA

    V

    S

    i

    Helmholtz’s Equation:

    HE,straightforward

  • June 5, 2002 Tokyo Institute of Technology

    No. 3MoM

    Boundary Condition

    V

    S

    i

    Boundary condition

    微分方程式+境界条件で解が一意に決定!

  • June 5, 2002 Tokyo Institute of Technology

    No. 4MoM

    D.E. + B.C.

    Example

    xxfdxd

    =)(22

    21

    3

    6)( CxCxxf ++=

    1)1(0)0(

    )(22

    ==

    =

    ff

    xxfdxd

    D.E. (Differential Equation)

    D.E. +B.C. (Boundary Condition)

    0)0( 2 == Cf

    65,1

    61)1( 11 ==+= CCf

    ( )56

    )( 2 += xxxf

    2階編微分方程式→ 境界値問題(放物型、楕円型、双曲型)

    x

    f(x)

    O 1

  • June 5, 2002 Tokyo Institute of Technology

    No. 5MoM

    Maxwell’s Eq. + B.C.

    VS

    Boundary condition

    マクスウェルの方程式+境界条件で解が一意に決定

    iEH

    HE

    =+×∇

    =+×∇

    ωε

    ωµ

    j

    jand

    0

    ある境界条件の下で微分方程式を解きたい!

  • June 5, 2002 Tokyo Institute of Technology

    No. 6MoM

    Numerical Methods

    ① モーメント法 (Moment Method, Method of Moments, MoM)

    ・境界のみに未知数を配置

    ② 有限要素法 (Finite Element Method, FEM)

    ・空間を細かく分割し、空間全体に未知数を配置・微分方程式を直接解くのでなく、汎関数の極値問題 に置き換えて解く。

    ③ 時間領域差分法 (FDTD 法,   Finite Difference Time Domain method)

    ・マクスウェルの方程式を差分化して電磁界の伝播 をシミュレートする

    Variational method,EMF(Electro Motive Force) method,ICT(Improved Circuit Theory)etc.

  • June 5, 2002 Tokyo Institute of Technology

    No. 7MoM

    モーメント法Method of Moments (MoM)

    Moment Method

    zh− h0

    a

    0z 1z 2z 3z 1−Nz Nz 1+Nz

    1j 2j 3j Njz∆

    Source

    Observation

  • June 5, 2002 Tokyo Institute of Technology

    No. 8MoM

    History

    1968R. F. Harrington, “Field Computation by Moment Methods”,IEEE Press, New York, 1993

    E. Hallen,K. K. Mei,C. T. Tai

    1967 (Harrington)R. F. Harrington, “Matrix Methods for Field Problems”,Proc. IEEE, vol. 55, pp.136-149, February 1967

    R. F. Harrington, and J. R. Mautz, “Straight Wires With Arbitrary Excitation and Loading”,IEEE Trans. Antenna and Propagat., vol. AP-15, no. 4, pp. 502-514, July 1965

  • June 5, 2002 Tokyo Institute of Technology

    No. 9MoM

    Method of Moments

    積分方程式の導出

    未知分布量の離散化

    ポイントマッチング

    行列方程式を解く

    モーメント法(ガラーキン法等)

  • June 5, 2002 Tokyo Institute of Technology

    No. 10MoM

    Example: Charged Wire

    a− ax

    y

    z

    V

  • June 5, 2002 Tokyo Institute of Technology

    No. 11MoM

    Integral Equation

    ∫ −= baron 4)()( s

    so

    so drrr

    rrπερφ

    a− ax

    )( xρ

    or

    Vd sso

    s =−∫ baron 4)( rrr

    rπερ

    or は導体棒上

    Unknown charge distribution

  • June 5, 2002 Tokyo Institute of Technology

    No. 12MoM

    Expansion

    0xa=− Nxa =x

    )( xρ

    1x 2x 3x 1−nx nx 1−Nx

    1 2 3 n N

    ∑=

    =N

    nnn xfax

    1)()(ρ

  • June 5, 2002 Tokyo Institute of Technology

    No. 13MoM

    Point Matching

    Vdxfa sso

    N

    nnn =−∫ ∑=baron 1 4

    1)( rrrπε

    Vdxfa sso

    snN

    nn =−∫∑= baron1 4

    )( rrrπε

    Vdxxx

    xfa nns

    x

    xx sso

    snN

    nn =−∫∑ −== 1 4

    )(1 πε 0xa=− Nxa =

    x

    )( xρ

    1x 2x 3x 1−nx nx 1−Nx

    1 2 3 n N

    0xa=− Nxa =x

    )( xρ

    1x 2x 3x 1−nx nx 1−Nx

    1 2 3 n N

    observation point

    21 nnn

    oxxx += −

    Vdxxx

    a

    Vdxxx

    a

    n

    ns

    n

    ns

    x

    xx ss

    No

    N

    nn

    x

    xx sso

    N

    nn

    =−

    =−

    ∫∑

    ∫∑

    ==

    ==

    1

    1

    41

    41

    1

    11

    πε

    πεM

    =

    V

    V

    a

    a

    zz

    zz

    NNNN

    N

    MM

    L

    MOM

    L 1

    1

    111

    ∫−= −

    = nns

    x

    xx ss

    mo

    mn dxxx

    z1 4

    1πε

  • June 5, 2002 Tokyo Institute of Technology

    No. 14MoM

    Example

    -0.4 -0.2 0 0.2 0.4Position HmL2468

    101214

    eniLegrahc

    ytisnedHCpêmL

    maVV 1,1 ==m001.0

    V

  • June 5, 2002 Tokyo Institute of Technology

    No. 15MoM

    Method of Moments (MoM)

    source observation

    sr or

    source observation

    sr or

    (a) 重み付けしない場合

    (b) 重み付けする場合

    ここでは境界条件が満足される保証はない

    重み関数

    0xa=− Nxa =x

    )( xρ

    1x 2x 3x 1−nx nx 1−Nx

    1 2 3 n N

    0xa=− Nxa =x

    )( xρ

    1x 2x 3x 1−nx nx 1−Nx

    1 2 3 n N

    observation point

    Vd sso

    s =−∫ baron 4)( rrr

    rπερ

    Vdxdxxx

    xfxwa

    Vdxdxxx

    xfxwa

    N

    No

    n

    ns

    o

    n

    ns

    x

    xx

    x

    xx osso

    snoN

    N

    nn

    x

    xx

    x

    xx osso

    sno

    N

    nn

    =−

    =−

    ∫ ∫∑

    ∫ ∫∑

    − −

    = ==

    = ==

    1 1

    1

    0 1

    4)()(

    4)()(

    1

    11

    πε

    πεM

    Vdxxx

    a

    Vdxxx

    a

    n

    ns

    n

    ns

    x

    xx ss

    No

    N

    nn

    x

    xx sso

    N

    nn

    =−

    =−

    ∫∑

    ∫∑

    ==

    ==

    1

    1

    41

    41

    1

    11

    πε

    πεM

    ● 全体に境界条件を適用する

      (重み付け)

    観測するときに工夫する

  • June 5, 2002 Tokyo Institute of Technology

    No. 16MoM

    Basis functions

    -0.4 -0.2 0.2 0.4x

    -1

    -0.5

    0.5

    1

    1.5

    fHxL-2 -1 1 2 x

    -2

    -1

    12

    3

    4fHxL

    (a) パルス関数

    (b) ルーフトップ関数

    全域基底関数 (Entire domain basis functions)

    テイラー展開 (Taylor’s expansion)

    フーリエ級数展開 (Fourier series expansion)

    局所基底関数 (local basis functions)

  • June 5, 2002 Tokyo Institute of Technology

    No. 17MoM

    Example: Dipole Antenna

    zh− h0a

    zh− h0

    Electric field

    a

    d

    iE

    2/d2/d−

  • June 5, 2002 Tokyo Institute of Technology

    No. 18MoM

    ∫ ⋅= wire sssoeeo drrJrrGrE )();()({ } 0)()()(ˆ =+⋅ oioot rErEr

    Integral Equation

    z

    h− h0

    a

    )(zJ

    x

    y

    z

    )()(ˆ)();()(ˆ oi

    owire sssoeeotdt rErrrJrrGr ⋅−=⋅⋅ ∫

    sr

    or

    (ro is on the wire)

    グリーン関数

  • June 5, 2002 Tokyo Institute of Technology

    No. 19MoM

    Expansion

    x

    y

    zor

    srt̂

    zh− h0

    a

    0z 1z 2z 3z 1−Nz Nz 1+Nz

    1j 2j 3j Njz∆

    Source

    Observation

    ∑=

    =N

    nnna

    1)()( rJrJ

    )()(ˆ)();()(ˆ1

    oi

    ossnsoee

    N

    nno tdat

    n

    rErrrJrrGr ⋅−=⋅⋅ ∫∑ Γ=

  • June 5, 2002 Tokyo Institute of Technology

    No. 20MoM

    MoM (Weighting, Averaging)

    x

    y

    zor

    srt̂

    zh− h0

    a

    0z 1z 2z 3z 1−nz nz 1+nz

    njmj

    22 )( soso zza −+=−rr

    z∆

    Source Observation

    sr or

    { }

    { }{ }∫

    ∫ ∫∑

    Γ

    Γ Γ=

    ⋅⋅−=

    ⋅⋅⋅

    m

    m n

    ooi

    oomo

    ossnsoee

    N

    nnoomo

    dtt

    ddatt

    rrErrJr

    rrrJrrGrrJr

    )()(ˆ)()(ˆ

    )();()(ˆ)()(ˆ1

    ∫∫ ∫∑ ΓΓ Γ=

    ⋅−=

    ⋅⋅

    mm noo

    iomossnsoee

    N

    nnom ddda rrErJrrrJrrGrJ )()()();()(

    1

    ∫∫ ∫∑ ΓΓ Γ=

    ⋅−=⋅⋅mm n

    ooi

    omossnsoeeom

    N

    nn ddda rrErJrrrJrrGrJ )()()();()(

    1

    { })(ˆˆ)(ˆ)( omotmom ttJt rJrrJ ⋅==

  • June 5, 2002 Tokyo Institute of Technology

    No. 21MoM

    Matrix Form

    x

    y

    zor

    srt̂

    zh− h0

    a

    0z 1z 2z 3z 1−nz nz 1+nz

    njmj

    22 )( soso zza −+=−rr

    z∆

    Source Observation

    sr or

    =

    NNNNN

    N

    V

    V

    a

    a

    ZZ

    ZZMM

    L

    MOM

    L 11

    1

    111

    neemossnsoeeommnm n

    ddZ JGJrrrJrrGrJ∫ ∫Γ Γ =⋅⋅= )();()(

    imoo

    iomm

    mdV EJrrErJ −=⋅−= ∫Γ )()(

    観測点を基底関数より多くしたら???条件過剰の方程式を解く問題となる。(ムーア・ペンローズの一般逆作用素、QR分解, SVD?)

    )( on rE

  • June 5, 2002 Tokyo Institute of Technology

    No. 22MoM

    Half-wavelength Dipole

    -1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

    -1

    -0.75

    -0.5

    -0.25

    0.25

    0.5

    0.75

    1

    -0.2 -0.1 0 0.1 0.2Position HλL00.002

    0.004

    0.006

    0.008

    0.01

    edutilpmAHAL

    -0.2 -0.1 0 0.1 0.2Position HλL-38-36-34-32-30-28-26

    esahPHgedL

    Infinitesimal dipole

    遠方界指向性

    電流分布

  • June 5, 2002 Tokyo Institute of Technology

    No. 23MoM

    Method of Moments

    積分方程式の導出

    未知分布量の離散化

    ポイントマッチング

    行列方程式を解く

    モーメント法(ガラーキン法等)

    )()(),( ygdxxfyxKb

    a=∫

    Fredholm第一種積分方程式 (参考: 寺沢寛一、「数学概論」、岩波書店)

    ∑=

    =N

    nnn xfaxf

    1

    )()(

    ∫∫ ∫∑ ΓΓ Γ=

    =mm n

    dyygywdydxxfyxKywaN

    nn )()()(),()(

    1

    =

    NNNNN

    N

    V

    V

    a

    a

    ZZ

    ZZMM

    L

    MOM

    L 11

    1

    111

    積分方程式の数値解法!

  • June 5, 2002 Tokyo Institute of Technology

    No. 24MoM

    References

    [1] R. F. Harrington, “Field Computation by Moment Methods”, IEEE Press,New York, 1992

    [2] C. A. Balanis, “Antenna Theory”, John Wiley & Sons, Inc., 2nd ed., 1997[3] W. L. Stutzman and G. A. Thiele, “Antenna Theory and Design”, John Wiley & Sons, Inc.

  • June 5, 2002 Tokyo Institute of Technology

    No. 25MoM

    Conclusion

    Fine