Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function...

43
Numerical approximation of highly oscillatory integrals Sheehan Olver Numerical Analysis Group, DAMTP, University of Cambridge

Transcript of Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function...

Page 1: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Numerical approximation of highly

oscillatory integrals

Sheehan Olver Numerical Analysis Group, DAMTP, University of Cambridge

Page 2: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

The frequency of oscillations ω is large

To begin with, no stationary points in interval:

for

What are highly oscillatory integrals?

g′(x) != 0 a ≤ x ≤ b

I[f ] =∫ b

af(x) eiωg(x) dx

Page 3: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Applications

Acoustic integral equations

Function approximation

Spectral methods

Modified Magnus expansions

Computing special functions

Page 4: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Why are these integrals “hard” to compute?

x2ei100x

h

1

1

-1

Gauss-Legendre quadrature error

ω

50 100 150 200 250 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n = 1, n = 5, n = 10

Page 5: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

History

Asymptotic theory (expansions, stationary phase, steepest descent)

Filon method (1928)

Wrongly claimed to be inaccurate (Clendenin 1966)

Levin collocation method (1982)

Other methods (numerical steepest descent, Zamfirescu method, series transformations, Evans & Webster method)

Page 6: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Asymptotic Expansion

Rewrite the equation:

Integrate by parts:

Error term is of order

=1

(

f(b)

g′(b)eiωg(b)

f(a)

g′(a)eiωg(a)

∫ b

a

d

dx

f(x)

g′(x)eiωg(x)dx

)

−1

iωI

[

d

dx

f(x)

g′(x)

]

= O

(

1

ω2

)

I[f ] =∫ b

af(x) eiωg(x) dx =

1iω

∫ b

a

f(x)g′(x)

ddx

eiωg(x) dx

Page 7: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Define ¾ k by

The asymptotic expansion is

For increasing frequency, the s-step partial sum has an error of order

σk+1 =

σ′

k

g′

σ1 =

f

g′

I[f ] ∼ −

∞∑

k=1

1

(−iω)k

[

σk(b)eiωg(b)− σk(a)eiωg(a)

]

QAs [f ] − I[f ] ∼ O

(

ω−s−1)

Page 8: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

• Suppose

If f and its derivatives are bounded as ω increases, then

Corollary

I[f ] ∼ O

(

1

ωs+1

)

0 = f(b) = f ′(b) = · · · = f (s−1)(b)

0 = f(a) = f ′(a) = · · · = f (s−1)(a)

Page 9: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Interpolate f by a polynomial v such that the function values and the first s — 1 derivatives match at the boundary (Hermite interpolation)

I[v] is a linear combination of moments

We can compute I[v] if we can compute moments

Use corollary to determine the order of the error

The Filon-Type method

(From Iserles & Nørsett, 2005a)

Page 10: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

For nodes a = x0 < · · · < xº = b and multiplicities mk, let satisfy the system

Approximate I[f] by I[v]

If m0,mº ¸ s then the corollary implies

I[f ] − I[v] = I[f − v] ∼ O

(

1

ωs+1

)

v(xk) = f(xk)

v(mk−1)(xk) = f (mk−1)(xk)

k = 0, 1, . . . , ν

(Iserles & Nørsett, 2005a)

···

v(x) =∑

ckxk

Page 11: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Two-term asymptotic expansion, Filon-type method with endpoints and multiplicities equal to 2, and Filon-type method with nodes 0,½,1 and multiplicities 2,1,2

ω

220 240 260 280 300

0.25

0.5

0.75

1

1.25

1.5

ω3 |Error|

∫ 1

0

cos x eiωx

dx

Page 12: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Suppose F is a function such that

Rewrite preceding equation as

Collocate F by using the system

Approximate I[f] by

The Original Levin Collocation method

(From Levin, 1982)

v =

∑ckψk

d

dx

[

F (x) eiωg(x)]

= f(x) eiωg(x)

L[F ] ≡ F ′(x) + iωg′(x) F (x) = f(x)

L[v](x0) = f(x0) , · · · , L[v](xν) = f(xν)

QL[f ] ≡ I[L[v]] = v(b)eiωg(b)− v(a)eiωg(a)

Page 13: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

For nodes xk and multiplicities mk suppose

Regularity condition: can interpolate the nodes and multiplicities (always satisfied with polynomial basis)

Then, for m0,mν ≥ s :

Levin-type method

I[f ] − QL[f ] = I[f − L[v]] ∼ O

(

1

ωs+1

)

L[v](xk) = f(xk)

L[v](mk−1)(xk) = f (mk−1)(xk)

k = 0, 1, . . . , ν

g′ψk···

Page 14: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Sketch of ProofThe order follows from the corollary if f – L[v] and all its derivatives are bounded for increasing ω

Collocation matrix can be written as

Regularity condition ensures G is non-singular

From Cramer’s rule

Hence v and its derivatives are andO(

ω−1

)

L[v] = v′ + iωg′v = O(1)

A = P + iωG

ck =detAk

detA=

O(ωn)(iω)n+1 detG +O(ωn)

= O(ω−1

)

Page 15: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Asymptotic expansion, Filon-type method with only endpoints and multiplicities equal to 3, and Levin-type method with same nodes and multiplicities

ω220 240 260 280 300

2

4

6

8

10

ω4 |Error|

∫ 1

0cos x e

iω(x2+x)dx

Page 16: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Levin-type method and Filon-type method with endpoints and multiplicities 2, Levin-type method and Filon-type method with nodes 0,¼,⅔,1 and multiplicities 2,2,1,2

ω220 240 260 280 300

0.5

1

1.5

2

2.5

3

ω3 |Error|

∫ 1

0cos x e

iω(x2+x)dx

Page 17: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Multivariate Highly Oscillatory integrals

The boundary of Ω is piecewise smooth

Nonresonance condition is satisfied:

∇g is never orthogonal to the boundary

No critical points in domain:

for (x,y) ∈ Ω

∫Ω

f(x, y)eiωg(x,y) dV

∇g(x, y) "= 0

Page 18: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

There exists an asymptotic expansion that depends on f and its derivatives at the vertices

The s-step approximation, which uses the order s – 1 partial derivatives of f at the boundary, has an error

The multivariate Filon-type method consists of interpolating f and its derivatives at the vertices

O

(

1

ωs+d

)

Page 19: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

For a function F, we write the integral as

Green’s theorem states that the above integral is the same as

Thus collocate f by v using the operator

∮∂Ω

eiωg(x,y)F · ds =

∮∂Ω

eiωg(x,y)(F1(x, y) dy − F2(x, y) dx)

∫∫Ω

[F1,x + F2,y + iω(gxF1 + gyF2)] eiωg dV

L[v] = v1,x + v2,y + iω(gxv1 + gyv2) = ∇ · v + iω∇g · v

Page 20: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

For nodes xk and multiplicities mk collocate using the system

Regularity condition: can interpolate at the given nodes, plus regularity condition satisfied in lower dimensions

Method has asymptotic order

Levin-type method

∂|m|

∂xm

L[v](xk) =∂|m|

∂xm

f(xk)k = 0, 1, . . . , ν

|m| ≤ mk − 1

v = [v1, v2]! =

∑ckψk

∇g · ψk

O(ω−s−2

)

Page 21: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

T1(t)

T2(t)

T3(t)

QLg [f ] =

!

QLg(T!(t))

[v(T!(t)) · JT!(t)]

Ω

for

∫∫

Ωfeiωg dV ≈

∫∫

ΩL[v]eiωg dV =

∂Ωeiωgv · ds =

#

T!

eiωgv · ds

=∑

#

∫ 1

0eiωg(T!(t))v(T#(t)) · JT!(t) dt ≈ QL

g [f ]

JT (t) =(

T ′2(t)

−T ′1(t)

)

Page 22: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Domains

Simplex

Quarter Circle

S

0

e1

e2

0

e1

e2

H

Page 23: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Levin-type method with only vertices and multiplicities all one on a two-dimensional simplex

ω3 |Error|

220 240 260 280 300Ω

0.10.20.30.40.50.6

∫∫

S

(

1

x + 1+

2

y + 1

)

eiω(2x−y) dV

Page 24: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Levin-type method with only vertices and multiplicities all two on a quarter circle

ω4 |Error|

150 200 250 300 350 400Ω

30

35

40

45

∫∫H

ex

cos xy eiω(x2+x−y2

−y)dV

Page 25: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Stationary points

Consider the integral

where

∫ 1

−1f(x)eiωg(x) dx

0 = g(0) = g′(0) = · · · = g

(r−1)(0), g(r)(0) > 0

1 2-1-2

1

-1

cos 20 x2

Page 26: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Stationary Points

Filon-type methods work, but still require moments (which are harder to find since the oscillator is more complicated)

Levin-type methods do not work

We will combine the two methods to derive a Moment-free Filon-type method

Page 27: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Asymptotic Expansion

Can still do integration by parts (r = 2):

Unfortunately requires moments

I[f ] = I[f − f(0)] + f(0)I[1]

=1

∫ 1

−1

f(x) − f(0)

g′(x)

d

dxeiωg(x) dx + f(0)I[1]

=

[

f(1) − f(0)

g′(1)eiωg(1)

f(−1) − f(0)

g′(−1)eiωg(−1)

]

1

iωI

[

d

dx

[

f(x) − f(0)

g′(x)

]]

+ f(0)I[1]

(From Iserles & Nørsett, 2005a)

Page 28: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Moment-Free Methods

Idea: find alternate to polynomials that can be integrated in closed form for general oscillators

Can be used to find an asymptotic expansion which does not require moments (turns out to be stationary phase under a different guise)

Can be used as an interpolation basis in a Filon-type method, to improve accuracy like before

Page 29: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Incomplete Gamma Functions

Suppose

Solve the differential equation

Solution is known:

g(x) = xr

L[v] = v′ + iωg

′v = v

′ + riωxr−1

v = xk

v(x) =ω−

1+k

r

re−iωx

r+

1+k

2riπ

[

Γ

(

1 + k

r,−iωxr

)

− Γ

(

1 + k

r, 0

)]

x ≥ 0

Page 30: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Now replace occurrences of with

We obtain

Calculus can show that

xr

g(x)

Dr,k(sgn x) =

(−1)k sgn x < 0 and r even,

(−1)ke−1+k

riπ sgn x < 0 and r odd,

−1 otherwise.

φr,k(x) = Dr,k(sgnx)ω−

k+1r

re−iωg(x)+ 1+k

2riπ

[

Γ

(

1 + k

r,−iωg(x)

)

− Γ

(

1 + k

r, 0

)]

L[φr,k] (x) = sgn (x)r+k+1 |g(x)|k+1

r−1g′(x)

r

Page 31: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

These functions look ugly, but have following nice properties:

Are smooth:

form a Chebyshev set (can interpolate any given nodes/multiplicities)

are independent of

Are integrable in closed form:

φr,k,L[φr,k] ∈ C∞

L[φr,k]

L[φr,k] ω

I[L[φr,k]] = φr,k(1)eiωg(1)− φr,k(−1)eiωg(−1)

Page 32: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Asymptotic expansion versus Moment-free Filon-type method with endpoints and zero and multiplicities equal to 2,3,2

50 100 150 200Ω

0.00050.0010.00150.0020.00250.0030.0035

ω

5

2 |Error|∫ 1

−1cos x e

iω(4x2+x

3)dx

Page 33: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Use terms from the asymptotic expansion as the collocation basis:

Captures asymptotic behaviour of the expansion while allowing for possibility of convergence

If the regularity condition is satisfied then we obtain an order of error , where n is the size of the system and s is again the smallest endpoint multiplicity

Levin-Type method with asymptotic basis

∇g · ψ1 = f, ∇g · ψk+1 = ∇ · ψk, k = 1, 2, . . . .

O(

ω−n−s−d

)

Page 34: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Asymptotic expansion , Filon-type method with only endpoints and multiplicities equal to 3, and Levin-type method with asymptotic basis with nodes 0,½,1 and multiplicities all one

ω

220 240 260 280 300

0.5

1

1.5

2

ω4 |Error|

∫ 1

0

log(x + 1) eiωx dx

Page 35: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

-16

-14

-12

-10

-8

-6

4 5 6 7 8 9

Asymptotic Filon Levin with asymptotic basis

order of error with ! = 50

log10 |Error|

∫ 1

0

log(x + 1) eiωx dx

Page 36: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Levin-type method with asymptotic basis with only vertices and multiplicities all one on a two-dimensional simplex

220 240 260 280 300Ω

0.275

0.3250.350.3750.4

0.425

ω4|Error|

∫∫

S

(

1

x + 1+

2

y + 1

)

eiω(2x−y) dV

Page 37: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Write the Airy function as

Approximate first integral with Moment-free Filon-type method

Approximate second integral with Levin-type method with asymptotic basis

Airy function

Ai (x) = ![

√x

∫ ∞

0eix3/2(t3−t) dt

]

= ![

√x

∫ 2

0eix3/2(t3−t) dt +

√x

∫ ∞

2eix3/2(t3−t) dt

]

Page 38: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

One-term asymptotic expansion, Moment-free Filon-type method & Levin-type method with asymptotic basis with nodes 0,1,2, 0,0.5,1,1.5,2,3 and 0,1,2 with multiplicities 2,3,2 compared to

ω

Ai (−ω)

Ai (−ω)

50 100 150 200 250 300

- 12

- 10

- 6

- 4

- 2log10 |Error|

Page 39: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

220 240 260 280 300

50000

100000

150000

200000

250000

300000

350000

Asymptotic expansion , Filon-type method with only endpoints and multiplicities equal to 3, and Levin-type method with asymptotic basis with only endpoints and multiplicities all one

ω

ω4 |Error|

∫ 1

0e10x

eiω(x2+x)

dx

Page 40: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Order 4 5 7

Filon-type 0.042 0.0016 1.3 · 10–6

Levin-type 0.015 0.00043 3 · 10–7

Asymptotic expansion

0.0083 0.00011 1.7 · 10–8

Levin asymptotic

basis0.00059 2.8 · 10–6 9.9 · 10–12

ω = 200

∫ 1

0e10x

eiω(x2+x)

dx

Page 41: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

MiscellaneousFilon-type and Levin-type methods do not need derivatives to obtain high asymptotic orders

Can use incomplete Gamma functions for multivariate integrals with stationary points

Can replace collocation with least squares

Collocation with WKB expansion can be used to approximate oscillatory differential equations

0 11ω

1− 1ω

Page 42: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

Arieh Iserles

Daan Huybrechs

David Levin

Syvert Nørsett

University of Cambridge

Gates Cambridge Trust

Acknowledgements

Page 43: Numer ical appr oxima tion of highly oscilla tor y integralssolver/talks/FoxTalk.pdf · Function approximation Spectral methods Modified Magnus expansions ... (Clendenin 1966) Levin

References

Clendin, W. W. (1966), A method for numerical calculation of Fourier integrals, Numeri. Math. 8, 422–436.

Iserles, A. & Nørsett, S. P. (2005a), Efficient quadrature of highly oscillatory integrals using derivatives, Proceedings Royal Soc. A., 461: 1383–1399.

Levin, D. (1997), Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations, Math. Comp. 38: 531–538.

Olver, S. (2006a), Moment-free numerical integration of highly oscillatory functions, IMA J. of Num. Anal. 26: 213–227.

Olver, S. (2006b), On the quadrature of multivariate highly oscillatory integrals over non-polytope domains, Numer. Math. 103: 643–665.

Olver, S. (2007), Moment-free numerical approximation of highly oscillatory integrals with stationary points, to appear in Euro. J. Appl. Maths.