Novel Ion Mobility Technology for LC/MS · PDF file• Custom reporting to comprehensively...

77
Novel Ion Mobility Technology for LC/MS Jaume C. Morales MS Product Specialist February 26, 2014 1

Transcript of Novel Ion Mobility Technology for LC/MS · PDF file• Custom reporting to comprehensively...

Novel Ion Mobility Technology for LC/MS

Jaume C. Morales

MS Product Specialist

February 26, 2014

1

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

2

ASMS 2013 Ion Mobility

Abstracts

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

3

ASMS 2013 Ion Mobility

Abstracts

Nueva serie

LC Agilent

1200 Infinity

Page 4

Presentación de los

instrumentos LC de la nueva

plataforma

Agilent – 1220, 1260 y 1290

Page 5

Nueva Serie Agilent 1200 Infinity Elevando el Estandard en HPLC – UHPLC para el Laboratorio

1260

Infinity LC

Modular

600 bar

80 Hz

2x ó 10x Sensivilidad UV

100% HPLC Compatible

Precio HPLC

Capacidades UHPLC

1220

Infinity LC

Integrado

600 bar

80 Hz

El más económico

HPLC y UHPLC

Tecnologia 1260/1290

1290

Infinity LC

Modular

1200 bar

160 Hz

Máximo rendimiento UHPLC

Máxima Flexibilidad

Coste Servicio HPLC

Page 7

¿Que es UHPLC ?

1. Las partículas más pequeñas permiten una menor altura de

plato teórico mostrando pues una mayor resolución

cromatográfica.

2. La resolución cromatográfica sufre menos al incrementar el

flujo cuanto más pequeña es la partícula

Características de UHPLC

Resolución y Flujo

Page 8

Nueva Serie Agilent 1200 Infinity Elevando el Estandard en HPLC – UHPLC para el Laboratorio

1260

Infinity LC

Modular

600 bar

80 Hz

2x ó 10x Sensivilidad UV

100% HPLC Compatible

Precio HPLC

Capacidades UHPLC

1220

Infinity LC

Integrado

600 bar

80 Hz

El más económico

HPLC y UHPLC

Tecnologia 1260/1290

1290

Infinity LC

Modular

1200 bar

160 Hz

Máximo rendimiento UHPLC

Máxima Flexibilidad

Coste Servicio HPLC

Page 9

Nueva Serie Agilent 1200 Infinity - Rangos de Potencia

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Toda Columna analítica

Transferencia de método

Mayor Resolución

Análisis más rápidos

Disolventes más viscosos

Bajas Temperaturas

Semi-preparativo

1290 Infinity LC

1260 Infinity Quat./Iso LC

1220 Infinity LC

Presión (bar)

Flujo (ml/min)

1260 Infinity Binary LC

Un nuevo rango de potencias capaz de proporcionar el máximo

rendimiento, flexibilidad, compatibilidad y protección de la inversión

NUEVA Serie 1200 Infinity Mayor automatización y enfoque en la aplicación

GPC

SEC

Preparative

LC & LC/MS

Nanoflow

HPLC-Chip MS

Isocratic

LC

Nano LC

& Cap LC

Analytical

SFC

Bio-inert

HPLC

Multi-method and

Method Development

High-throughput

LC & LC/MS

Page 10

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

– Software tools

– Ω

– Lipids

– Carbohydrates

Summary

ASMS 2013 Ion Mobility

Abstracts

Agilent 6000 Series LC/MS Portfolio

6200 series TOF

6100 series Quad

6500 series Q-TOF

6400 series QQQ

High Resolution - Qualitative

Low Resolution - Quantitative

Sin

gle

Stag

e Tan

dem

Stage

6400 Triple Quadrupole Mass Spectrometer Feature Benefit

Dynamic MRM Extremely complex samples

Jet Stream Technology High sensitivity

Full autotune and calibration Easy to maintain

Broadest range of ion sources Multiple applications

Wide dynamic range Complex sample analysis

Fast polarity switching Analysis of multiple sample types

Dual Ion Funnel Highest sensitivity

6460

6420

• Focused analysis of small molecules e.g., organic chemistry • Natural product research • Pharmaceutical analysis such as BA/BE • DMPK studies • Quantitative analysis of compounds in high complexity backgrounds • Quantitative food safety analysis e.g., pesticides, drug residues • Clinical analysis e.g., endocrinology, new born screening • Peptide and metabolite quantitation

6430

6490

6500 True High Def Q-TOF Mass Spectrometer Feature Benefit

True High-Def TOF High mass accuracy

Jet Stream Technology High sensitivity

Full autotune and calibration Easy to maintain

Broadest range of ion sources Multiple applications

Wide dynamic range Complex sample analysis

ChipLC Superb nano-spray applications

Dual Ion Funnel Highest sensitivity

6530

6540

• Proteomics including profiling and differential expression analysis • Protein identification – amino acid sequencing • Metabolomics profiling and identification • Quantitative analysis of compounds in low complexity backgrounds • Food safety analysis e.g., screening • Natural product analysis

6550

Agilent 6550 Q-TOF with iFunnel Technologies

New- Ion Beam

Compression and

Shaping (resolution

+ sensitivity)

New- iFunnel (10X

sensitivity gain)

Hexapole axial focusing collision cell

(faster MS/MS spectra)

New- Dual Agilent

JetStream orthogonal

spray (robust and

stable mass

calibration)

4 GHz digitizer + ADC

detector

(resolution, mass accuracy,

dynamic range)

Longer Invar flight tube

(resolution + stable mass

accuracy)

New embedded processor

(50 spectra/sec)

March 2, 2012 15

6550 iFunnel Q-TOF

LC/MS System

ASMS 2010

Sensitivity

• Dramatically improved quantitative capabilities

• New Qual/Quan Workflows

• Superior metabolite and protein detection

• Non-targeted compound screening

Comprehensive Performance Enhancements

• Mass Resolution >40,000

• 50 spectra /sec MS and 33 spectra/sec MS/MS

• 5 orders of linear dynamic range

• <1 ppm MS mass accuracy; <2 ppm MS/MS

• Unrivalled sensitivity

New 6550 iFunnel QTOF

10X Sensitivity Gain Enables Applications

iFunnel Technology Revolutionizes Ion Sampling

10X Sensitivity Breakthrough Proven on 6490 QQQ

Agilent Jet

Stream

Hexabore

Capillary Dual Stage Ion Funnel

Now- 10X Sensitivity Breakthrough for 6550 QTOF

iFunnel Technology Revolutionizes Ion Sampling

Agilent Jet Stream

• Thermal confinement of

ESI plume

• Efficient desolvation to

create gas phase ions

• Creates an ion rich zone

Hexabore Capillary

• 6 capillary inlets

• Samples 6 times more ion

rich gas from the source

• Captures the majority of

the gas from the source

region

Dual Ion Funnel

• Removes the gas but

captures the ions

• Removes neutral noise

• Extends turbo pump life

2. Instrument and Software Overview

Start temperature 250 C at t = 0 min

Focusing of the ion beam

2. Instrument and Software Overview

Focusing of the ion beam

2R

Stop Temperature 4000 C at t = 8 min

QTOF Acquisition – MS and MS/MS Modes of Operation

• MS Only – “TOF only” mode

• MS/MS All Ions . MS & MS/MS info at the same time.

• Data Dependent MS/MS Experiments

• Precursor selection based on intensity of n-highest (with relative and absolute threshold)

• Excluded and Preferred mass lists

• Configurable charge-state selection preference

• Data Directed (Targeted) MS/MS experiments

• Import of target mass lists from Mass Profiler or Mass Profiler Professional software

• Import of mass lists from other applications

• Automatic dynamic creation of time segments

2. Instrument and Software Overview

Screening and identification workflow

Agilent’s approach

• Combination of UHPLC separation and accurate mass TOF technology

• Effective data mining algorithms to FIND compounds in a sample

• Optional software to COMPARE samples or sample sets to identify differences

• AMRT Databases and MS/MS Library Search to easily IDENTIFY targeted compounds

• Several algorithms to help IDENTIFYING unknown compounds (MFG, MSC)

• User Interface to easily NAVIGATE RESULTS

• Custom reporting to comprehensively REPORT results

• Full AUTOMATION of data acquisition, processing and reporting

TOF/

Q-TOF

Analysis

ID via

AMRT

DBs

Find

Compounds

MFG of

Compounds

w/ MSMS

MSMS

structural

correlation

ID via

MSMS

libraries

OPTION:

Differential

Analysis

Print

custom

report

Automation

Screening and identification workflow

TOF/

Q-TOF

Analysis

ID via

AMRT

DBs

Molecular

Feature

Finding

MFG of

Compounds

w/ MSMS

MSMS

structural

correlation

ID via

MSMS

libraries

Automation

OPTION:

Differential

Analysis

MS/MS Structural Correlation (MSC)

Print

custom

report

• Algorithm to correlate “proposed

structures” with accurate mass

MS/MS fragment ion spectrum.

• Favor systematic bond

dissociation approach over rule

based fragmentation prediction

approach.

• Proposed structures can be selected directly or searched in a PCDL or via ChemSpider

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

24

ASMS 2013 Ion Mobility

Abstracts

Drift Ion Mobility for LC-MS

Cross sectional areas

Complex Samples

Shape and Charge

Conformers

Isomers

Chromatography, Mass Resolution &

now Ion Mobility

2013 ASMS Scientific Presentations:

• Disease research

• Proteomics, Metabolomics, Lipidomics

• Natural Products

• Fundamental studies

Ion Mobility

MS

Pacific Northwest

Labs

Texas A&M

Vanderbilt University

Boston University

NIH

February 26, 2014

25

Solving Analytical Problems

February 26, 2014

26

Better IM resolution

Higher IM sensitivity

Resolve complex samples

Direct measurement

of Ω

Preserve molecular structures

• Richard Smith

• Erin Baker PNNL

• Cathy Costello

• Joe Zaia Boston University

• David Russell

• Fred Zinnell Texas A&M

• John McLean, Jody May and Cody Goodwin Vanderbilt University

• Al Yergey

• Peter Backlund. NIH

• Agilent LABS R&D Agilent

Solving Analytical Problems

February 26, 2014

27

Better IM resolution

Higher IM sensitivity

Resolve complex samples

Direct measurement

of Ω

Preserve molecular structures

• Enhance throughput, improve sensitivity and quantitation

• For large scale -omics studies PNNL

• Improving glycan analysis

• Disease research - Entamoeba Boston University

• Ion mobility fundamentals

• Study of metallo-protein structures Texas A&M

• Collisional cross section data (Ω)

• Mapping specific chemical classes – natural products

Vanderbilt University

• Separation of androgenic steroids not amenable to LC & MS

• Ω used to identify isobaric steroids NIH

• Characterization of trans membrane domains.

• Preservation of fragile protein folding structures Agilent

Ion Mobility – A Brief History…

February 26, 2014

28

1905

Ion mobility theory

Paul

Langevin

1969

Transport of Ions in Gases

McDaniel & Mason

1997

Applications to clusters & biomolecules

Clemmer & Jarrold

2006

Synapt Triwave

G2 in 2009

G2S in 2011

2013

Agilent IMS QTOF

1872 - 1946

Mass Spectrograph

Aston & Thomson

1919

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

29

ASMS 2013 Ion Mobility

Abstracts

Mass Accuracy Does Not Equal Compound Identification: Seven Golden Rules - Oliver Fiehn

Empirical formula is not unique above

mass m/z 100 (searching PubChem)

Number of formula: ChemSpider mass

search at m/z 400.3787

• 1 ppm mass error → 1742 entries

• 0 ppm mass error → 340 entries

Need additional physical information to

identify

• MS/MS spectra

• Physical properties such as:

• Chromatographic retention time

• Ion mobility cross section (size,

charge)

Number of Database Entries

(Assuming Zero Mass Error)

February 26, 2014

30

What Does Ion Mobility Bring to Mass Spectrometry?

Separation

• Ion Mobility resolves of many isomeric analytes otherwise impossible to

determine by mass spectrometry alone.

Improves Detection Limits

• Ion Mobility dramatically reduces interference from other analytes and

background.

Confirmation

• Collision Cross Section data gives additional information supporting

compound characterization and identification.

February 26, 2014

31

Resolving Stereoisomers

α-glucose β-glucose

Ion mobility enables separation of glucose stereoisomers

Resolving Structural Sugar Isomers C18H32O16

Melezitose

Raffinose

Resolving two isobaric trisaccharides

Melezitose

Raffinose

α-glucose b-glucose

Resolving Different type of Isomers

Resolution Is Important!

Chromatographic Ion Mobility Mass

~seconds ~60 milli-seconds ~ 100 m seconds

February 26, 2014

35

It’s All About Separation

Chromatography Ion Mobility Mass

~seconds ~60 milli-seconds ~100 m seconds

February 26, 2014

36

Aldicarb-sulfone (C7H14N2O4S)

[M+Na]+ = 245.056649

Acetamiprid (C10H11ClN4)

[M+Na]+ = 245.056445

D mass is 0.2 mDa requires ~2,000,000 resolution

Separation of Isobaric Pesticides

4 x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

19.441

17 17.5 18 18.5 19 19.5 20 20.5 21 21.5

6 x10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

18.297

Drift Time (ms) 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5

Aldicarb-sulfone

Acetamiprid

Drift Time (ms)

17 17.5 18 18.5 19 19.5 20 20.5 21 21.5

4x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

+IMS DriftSpec (m/z: 245.013827-245.177238) (rt: 0.026-1.987 min) Aldicarbsulfone_A…

* 18.297

* 19.441

Counts vs. Acquisition Time (min)17 17.5 18 18.5 19 19.5 20 20.5 21 21.5

Theoretical Plot

IMS Drift

Separation

February 26, 2014

37

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

38

ASMS 2013 Ion Mobility

Abstracts

IM-QTOF Instrument Overview Novel Aspects Achieve New Performance Capabilities

DC only drift tube to achieve lowest ion temperatures

System sensitivity optimized using electrodynamic ion funnels

Designed for both high Ion Mobility and Mass Resolution

Ion Fragmentation can be selected using standard QTOF collision cell (CID)

10x increase in data acquisition system to support the additional data rates of adding the 3rd Ion Mobility Dimension

February 26, 2014

39

tdrift

Detector

Analyte

Ions

Gating

Optics

Ion Mobility Cell

t0

VH VL

Electric Field

Stacked ring ion guide gives linear field

𝑣 = 𝐾 𝐸 ∝𝑒 𝐸

𝑃 𝑇 Ω

Basic Operational Principle of Ion Mobility For Conventional DC Uniform Field IMS

February 26, 2014

40

The Agilent Ion Mobility System

• Nitrogen buffer gas

• Funnels drive sensitivity

• Uniform Field Drift Tube allows direct determination of Ω

• Longer drift tube drives resolution approaching theoretical limit

• Fragmentation after IMS means parents and fragments have common drift times

enables an all ion experiment (with the precursor ions separated by drift times).

Mobility Resolution

∝ 𝐿𝐸𝑍𝑒

February 26, 2014

41

How does i-Funnel work?

The RF Voltage

focuses the ions

to the center.

The DC Voltage

accelerates the

ions to the exit.

RF Drive

DC Drive

Unfocused

Ions and Gas

Enter

Focused

Ions Out

Página

42

10-20m

The Agilent Ion Mobility System

Mobility Resolution

∝ 𝐿𝐸𝑍𝑒

February 26, 2014

43

• Nitrogen buffer gas

• Funnels drive sensitivity

• Uniform Field Drift Tube allows direct determination of Ω

• Longer drift tube drives resolution approaching theoretical limit

• Fragmentation after IMS means parents and fragments have common drift times

enables an all ion experiment (with the precursor ions separated by drift times).

The Agilent Ion Mobility System

Electric Field

Mobility Resolution

∝ 𝐿𝐸𝑍𝑒

February 26, 2014

44

𝑣 = 𝐾 𝐸 ∝𝑒 𝐸

𝑃 𝑇 Ω

• Nitrogen buffer gas

• Funnels drive sensitivity

• Uniform Field Drift Tube allows direct determination of Ω

• Longer drift tube drives resolution approaching theoretical limit

• Fragmentation after IMS means parents and fragments have common drift times

enables an all ion experiment (with the precursor ions separated by drift times).

Front-end Instrumentation

Ion funnel technology drives sensitivity gain

February 26, 2014

45

Powered by MassHunter 64

Plataforma MassHunter

Control Instrumento

Señal a tiempo real

Creación método

Autotune

Automatización

Análisis Cualitativo

Resultados Cromatog.

Result. Espectrales

BioConfirm

Find compounds

Screening

Compound ID

Análisis cuantitativo

Result. compuestos

Curvas calibración

Confirmación Espectr.

Informes

Fácil de personalizar

Basados en Excel y tecnología XML

MassHunter LC/MS Acquisition

Customizable layouts with sizable, dockable Windows

LC control identical to OpenLAB CDS; supports FLD, MWD, and new valves

New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data

322.0481

622.0294

922.0098 1221.9906 1521.9711

1821.9521 2121.9332

2421.9138

2721.8941

IMS/MS Frame

Selection

Chromatogram View

Software

Solutions for

Improving your

Productivity

February 26, 2014

49

• Frame Navigation tool

• Frame viewer

• Heat map

IM Drift TIme

MS

New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data

IMS/MS Frame

Selection

Software

Solutions for

Improving your

Productivity

February 26, 2014

50

IM Drift TIme

MS

Chromatogram View

New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data

Frame View

Ion mobility Frame Viewer provides linked views for easier navigation

322.0481

622.0294

922.0098 1221.9906 1521.9711

1821.9521 2121.9332

2421.9138

2721.8941

Easily

Customized

for your

Preference

February 26, 2014

51

FRAME LENS

IM Drift TIme

MS

New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data

Ion mobility Frame Viewer provides linked views for easier navigation

2721.8941

2722.8974

2723.9003

February 26, 2014

52

HEAT MAP

Ion Mobility Resolution. How much?

536.5960 536.9300

537.2644

Resolution = 84!

Zipper peptide

February 26, 2014

53

Resolving Stereoisomers. Why High Resolution?

February 26, 2014

54

α-glucose β-glucose

Ion mobility enables separation of glucose stereoisomers

IMS QTOF - Overview

UHPLC

HD QTOF

IMS Background

Ion Mobility Basics

Instrument & Software Overview

Applications

- Software tools

- Ω

- Lipids

- Carbohydrates

Summary

February 26, 2014

55

ASMS 2013 Ion Mobility

Abstracts

Published Collisional Cross Sections

February 26, 2014

56

Analyte Mass

[Da]

CCS

Literature

[Å2]

CCS

This Work

[Å2]

%

Deviation

from Lit.

Colchicine1 399.4 196.2 196.2 ± 0.54 Å2 0%

Odansetron2 293.4 172.7 173.8 ± 0.36 Å2 0.6%

Threonine 119.1 130.1 ±0.45 Å2 <2%

Phenylalanine 165.2 140.9 ±0.5 Å2 <2%

Tyrosine 181.2 148.4 ±0.6 Å2 <2%

Fructose 180.2 143.4 ±0.6 Å2 <2%

Sorbitol 182.2 142.7 ±0.5 Å2 <2%

1. Anal.Chem. 2012;84:1026.

2. Int. J. MS. 2010;298:78

3. JASMS.2007;18:1163

New Analyte Ion

CCS

IMS QTOF

[Å2]

5α-dihydrotestosterone (M+H)+ 181.6 ± 0.

5α-dihydrotestosterone (M+Na)+ 201.5±1.0

5β-dihydrotestosterone (M+H)+ 179.8±0.8

5β-dihydrotestosterone (M+Na)+ 199.5±0.8

androsterone (M+Na)+ 200.0±0.7

etiocholanolone (M+Na)+ 196.3±1.1

5-androstenediol (M+Na)+ 174.0±1.5

epiandrosterone (M+Na)+ 197.0±0.8

Excellent agreement between published

and measured cross sections

Collaboration with NIH

Reveal Greater Detail All Ions: Ondansetron, Colchicine, Reserpine

Reserpine

Colchicine

Ondansetron

609.2800

400.1749

294.1597

IM Drift TIme

MS

Reveal Greater Detail All Ions: Ondansetron

June 2013

58

294.1597

184.1117

170.0960

212.1064

294.1597

All Ion MS using 20 Volt Fragmentation Energy

Collective drift spectrum includes all ions generated from 3 compounds

Reserpine

Colchicine Ondansetron

100 m/z 600

12

d

rift t

ime (

ms)

4

0

Drift Time Separated Fragmentation

Simultaneous separation and fragmentation for ondansetron

Ondansetron

[M+H]+

100 m/z 600

12

d

rift t

ime (

ms)

4

0

Simultaneous separation and fragmentation for colchicine

Drift Time Separated Fragmentation

Colchicine

[M+H]+

100 m/z 600

12

d

rift t

ime (

ms)

4

0

Simultaneous separation and fragmentation for reserpine

Drift Time Separated Fragmentation

Reserpine

[M+H]+

100 m/z 600

12

d

rift t

ime (

ms)

4

0

Collision Cross Section Benchmark Vanderbilt University

• Tetraalkylammonium salts (TAA)

• Proposed as an “ideal” ion mobility standard

• Wide CCS range (TAA-4 to TAA-18; 100 to 400 Å2)

• TAA salts do not form clusters

• Literature CCS values exist N2 drift gas

+2 ions

+3 ions

+1 ions TAA-16

TAA-18

TAA-12

TAA-10

TAA-8 TAA-7

TAA-6 TAA-5

TAA-4

0

10

30

40

200 400 600 800

0

20

Mo

bilit

y D

rift

Tim

e (

ms)

Mass-to-Charge (m/z) 1000 1200

50

TAA-5 N-(CH2CH2CH2CH2CH3)4

February 26, 2014

64

Tetraalkylammonium Salts CCS Values Compared to Literature

February 26, 2014

65

Analyte

Measured

Cross-Section

[Å2]

TAA-4 166.61 ± 0.5%

TAA-5 189.21 ± 0.6%

TAA-6 212.71 ± 0.3%

TAA-7 236.34 ± 0.2%

TAA-8 257.19 ± 0.1%

TAA-10 294.53 ± 0.1%

TAA-12 323.62 ± 0.2%

TAA-16 362.03 ± 0.2%

TAA-18 381.58 ± 0.3%

Literature

Cross-Section

[Å2]

166.00 ± 0.3%

190.10 ± 0.1%

214.00 ± 0.3%

236.80 ± 0.2%

258.30 ± 0.4%

Relative Standard

Deviation

[%]

0.56

0.28

0.41

0.01

0.24

• High experimental precision

(< 0.5% relative deviation)

• Agreement with literature

(most < 0.5% deviation)

Conformational Space Occupancy of Biomolecules

Co

llis

ion

Cro

ss

Se

cti

on

2)

Mass (Da)

Hypothetical Ordering of

Biomolecular Classes

lipids

carbohydrates

peptides

oligonucleotides

February 26, 2014

67

Lipid nomenclature

Trivial nomenclature Palmitoleic acid Trivial names (or common names) are non-systematic historical names.

Systematic

nomenclature (9Z)-octadecenoic

acid

Systematic names (or IUPAC names) derive from the standard IUPAC Rules for

the Nomenclature of Organic Chemistry, published in 1979,[1] along with a

recommendation published specifically for lipids in 1977.[2] Counting begins from

the carboxylic acid end. Double bonds are labelled with cis-trans isomerism-

/trans- notation or E-/Z- notation, where appropriate.

Δx nomenclature cis,cis-Δ9,Δ12

octadecadienoic acid

In Δx (or delta-x) nomenclature, each double bond is indicated by Δx, where the

double bond is located on the xth carbon–carbon bond, counting from the

carboxylic acid end. Each double bond is preceded by a cis- or trans- prefix,

indicating the conformation of the molecule around the bond.

n−x nomenclature n−3

n−x (n minus x; also ω−x or omega-x) nomenclature both provides names for

individual compounds and classifies them by their likely biosynthetic properties in

animals. A double bond is located on the xth carbon–carbon bond, counting from

the terminal methyl carbon (designated as n or ω) toward the carbonyl carbon.

Lipid numbers 18:3; or 18:3, n-6; or

18:3, cis,cis,cis-

Δ9,Δ12,Δ15

Lipid numbers take the form C:D, where C is the number of carbon atoms in the

fatty acid and D is the number of double bonds in the fatty acid. This notation can

be ambiguous, as some different fatty acids can have the same numbers.

Source: Wikipedia

February 26, 2014

68

Lipid classes

Source: Wikipedia

Fatty acids

Glycerolipids

Glycerophospholipids

Sphingolipids

Sterol lipids

Prenol lipids

Saccharolipids

Polyketides

Main classes Examples of Glycerophospholipids

February 26, 2014

69

Cerebrosides

Cerebrosides are glycosphingolipids called

monoglycosylceramides which are important components in

animal muscle and nerve cell membranes.

February 26, 2014

70

Diseases Based on Sphingolipids

Disease Deficient enzyme Accumulated products

Niemann-Pick disease Sphingomyelinase Sphingomyelin in brain and RBCs

Fabry disease α-galactosidase A Glycolipids in brain, heart, kidney

Krabbe disease Galactocerebrosidase Glycolipids in oligodendrocytes

Gaucher disease Glucocerebrosidase Glucocerebrosides in RBCs, liver and

spleen

Tay-Sachs disease Hexosaminidase A GM2 gangliosides in neurons

Metachromatic

leukodystrophy Arylsulfatase A or

prosaposin Sulfatide compounds in neural tissue

Source: Wikipedia

February 26, 2014

71

Lipid Analysis

Tetraalkylammonium Salts

+2 ions

+3 ions

+1 ions

+4 ions

Ion

Mo

bilit

y D

rift

Tim

e (

ms)

Mass (Da)

0

0

20

40

50

500 1000 1500 2000

10

30

60

70

L-α-phosphotidylethanolamines (PE)

TAA-3

TAA-16

TAA-12

TAA-10

TAA-8 TAA-7

TAA-6

TAA-5

TAA-4

February 26, 2014

72

Lipid Analysis Io

n M

ob

ilit

y D

rift

Tim

e (

ms)

Mass (Da)

0

0

20

40

50

500 1000 1500 2000

10

30

60

70

PE 60:N PE 62:N

PE 64:N

PE 33:N PE 35:N

PE 37:N PE 39:N

PE 41:N

PE 23:N PE 21:N

PE 19:N

PE oligomers (+1)

PE oligomers (+2)

L-α-phosphotidylethanolamines (PE)

February 26, 2014

73

Lipid Analysis Io

n M

ob

ilit

y D

rift

Tim

e (

ms)

Mass (Da)

0

0

20

40

50

500 1000 1500 2000

10

30

60

70

PE 35:(6-2) PE 37:(8-4) PE 39:(10-6) PE 33:(4-2)

+Na +K

Mass (Da)

740 760 770 780 790 750 800 810 820

PE 60:N PE 62:N

PE 64:N

PE 33:N PE 35:N

PE 37:N PE 39:N

PE 41:N

PE 23:N PE 21:N

PE 19:N

PE oligomers (+1)

PE oligomers (+2)

February 26, 2014

74

Carbohydrates; Great complexity by linkage

Source: Blixt et al., PNAS, 2004

Current dominant strategies: MS(n) or Library searches

February 26, 2014

75

Carbohydrates Analysis

maltodextrins (1 to 8) cyclodextrins (α, β, γ)

human milk oligosaccharides (7)

Tetraalkylammonium Salts

+2 ions

+3 ions

+1 ions

+4 ions

Ion

Mo

bilit

y D

rift

Tim

e (

ms

)

Mass (Da)

0

0

20

40

50

500 1000 1500 2000

10

30

60

February 26, 2014

76

Carbohydrates IM-MS Io

n M

ob

ilit

y D

rift

Tim

e (

ms)

Mass (Da) 0

0

20

40

50

500 1000 1500 2000

10

30

60

Mixture of Lacto-N-difucohexaose I & II

Mass (Da)

1018 1022 1024 1026 1028 1020

Drift Time (ms)

37 39 40 41 42 38 36 35

Lacto-N-

difucohexaose II

Drift Time (ms)

37 39 40 41 42 38 36 35

Lacto-N-

difucohexaose I

Lacto-N-difucohexaose I

Lacto-N-difucohexaose II

Gal Glc Gal GlcNAc

Fuc Fuc

Gal Glc Gal GlcNAc

Fuc Fuc

February 26, 2014

77

• Next generation of IMS QTOF Technology

• Added dimension of separation based on size, charge and

molecular conformation

• Resolve and characterize the complex samples

- Increased peak capacity

• Direct determination collision cross sections

• Preservation of molecular structures via lower thermal

excitation

Summary

February 26, 2014

79