Non-Linear Fuzzy Dark Matter Modelling with Extended LPTlague/Alex_Lague-CCA-2018.pdf · 2018. 12....

24
Non-Linear Fuzzy Dark Matter Modelling with Extended LPT Alex Laguë, Renée Hložek, George Stein, and Dick Bond

Transcript of Non-Linear Fuzzy Dark Matter Modelling with Extended LPTlague/Alex_Lague-CCA-2018.pdf · 2018. 12....

  • Non-Linear Fuzzy Dark Matter Modelling with Extended LPTAlex Laguë, Renée Hložek, George Stein, and Dick Bond

  • Fuzzy Dark Matter (FDM)

    ✤ Ultra-light boson:

    ✤ Scale-dependent sound speed:

    ✤ Jeans scale:

    10−26 eV ≲ m ≲ 10−21 eV

    c2s =ℏ2k2

    4m2a2

    kJ = 66.5a1/4( ΩFDMh2

    0.12 )1/4

    ( m10−22 eV )1/2

    Mpc−1

    Marsh (1510.07633)

  • CκκlPmatter(k, z)

  • Cκκl

    Nori et al. (1801.08144)

    Pmatter(k, z)

    N-Body(AX-Gadget,

    Modified AREPO, etc.)

  • N-Body(AX-Gadget,

    Modified AREPO, etc.)

    Cκκl

    LPT (Peak-Patch,

    Pinocchio, COLA,etc.)

    Pmatter(k, z)

    Nori et al. (1801.08144)

  • Why Modified LPT

    1. Non-linear CMB lensing from LSS

    2. Low computational cost

    3. Large simulation volume

    Image: ESA

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method

    Stein et al. (1810.07727)

  • Peak-Patch Method Modifications

    FDM-Modified Steps

    A.B.

    C.

    LPT Step

    Stein et al. (1810.07727)

  • A. Initial Conditions

    Heavier Particles

    Computed with AxionCAMB (1607.08208)

  • Lensing ConstraintsC

    κκ lΔ

    Cκκ l

    /Cκκ l

    Cψl ≈ ∫χ

    0χ′�dχ′�PΨ(l/χ′�; η0 − χ′�)( χ − χ′�χχ′� )

    2

    l

  • Lensing Constraints

    ACT Limit

    Cκκ l

    ΔC

    κκ l/C

    κκ l

    l

  • ConstrainedRegion

    ObservationallyUnexplored

    ComputationallyAccessible

    ΔC

    κκ l/C

    κκ l

    l

    log10(m) [eV]

    ΩFDMΩDM

  • C. LPT Displacements

    Final PositionInitial Position

    ∇x ⋅ (d2Ψ

    dτ2+ 2

    ·aa

    dΨdτ ) = − 4πGρ̄δ(x) − c

    2s

    a2∇2xδ(x)

    Fuzzy DM Term

    x = q + Ψ Displacement Ψ ≈ Ψ(1) + Ψ(2)

    Linear Quadratic

    Axion Sound Speed

  • Ove

    rden

    sity

    δ(x)

    1 Mpc

    CDM

  • Ove

    rden

    sity

    δ(x)

    1 Mpc

    FDM

  • kSZ Contribution

    ΔTTCMB

    ∝ vpec

  • Future Outlook

    ✤ Part B. of the modifications: Ellipsoidal Collapse

    ✤ Further constraints from CMB lensing

    ✤ Comparison with N-Body/Hydro simulations

  • Thank you!

  • Baryon-Dominated Suppression

    L ≈ 3000 Nguyễn et al. (1710.03747)

  • Dynamical Effects (QP)

    Both

    Adding Pressure

    Changing I.C.

    m = 10−22 eV

    N-Body (AX-GADGET)

    z = 3

    Nori et al. (2018)

  • Dynamical Effects (QP)

    Both

    Adding Pressure

    Changing I.C.

    m = 10−22 eV

    N-Body (AX-GADGET)

    z = 3

    Nori et al. (2018)

    Pressure subdominant compared to change in I.C.