New Perturbed Angular Correlations in nuclear physics and material … 4... · 2012. 8. 6. · D e...

33
M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 2012 1 1 Perturbed Angular Correlations in nuclear physics and material science The phenomenon of γ-γ angular correlations Time Differential (TDPAC) and Time Integral (IPAC) technique Perturbation of Angular Correlations by Hyperfine Interactions Related techniques: TDPAD and SRPAC Applications Analysis of strengths and weaknesses Comparison with other hyperfine interaction techniques

Transcript of New Perturbed Angular Correlations in nuclear physics and material … 4... · 2012. 8. 6. · D e...

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201211

    Perturbed

    Angular

    Correlations in nuclear

    physics

    and material science

    The phenomenon of γ-γ angular correlations

    Time Differential (TDPAC) and Time Integral (IPAC) technique

    Perturbation of Angular Correlations by Hyperfine Interactions

    Related techniques: TDPAD and SRPAC

    Applications

    Analysis of strengths and weaknesses

    Comparison with other hyperfine interaction techniques

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201222

    180

    coun

    ts

    angle

    90 180

    Parent isotope

    I = 1

    I = 0

    I = 0

    γ1

    γ2

    Detector 1γ2 γ1

    Detector 2

    About 1011 parent isotopes

    in a sample

    Coincidencecounter

    Θ

    R.M. Steffen, Adv. In Phys. 4 (1955) 293

    Detector

    2

    Detec

    tor 2

    Det

    ecto

    r 2

    The phenomenon of unperturbed γ

    -

    γ

    angular correlations The time-integral mode (IPAC)

    For spin

    sequence

    0-1-0:counts

    cos2Θ

    W(Θ, t = 0 → ∞) = 1 + Akk

    Pk

    (cos

    Θ) , k = 2,4

    Akk

    = angular

    correlation

    coefficients

    integrates

    over

    all timesbetween

    γ1

    and γ2

    depend

    on spins, parities

    and multipole

    order of the

    cascade

    τ

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201233

    The

    angular

    characteristics

    Il,m (Θ) of the

    gamma-radiation

    depends

    on

    (l, m)

    Gamma decay

    of excited

    nuclear

    states

    Ib

    = 1

    Ia

    = 0

    Eγ (l,m)

    Ea

    Eb

    Mb10-1

    Ma0

    m= -1

    m = 1

    m = 0

    Conservation

    of angular

    momentum:|Ia

    -Ib

    |

    l ≤

    |Ia

    + Ib

    | , m = Ma

    - Mb

    l : multipole

    order l = 1

    dipole

    radiation

    l = 2 quadrupole radiation

    Nuclear

    physics

    : Dermination

    of the

    multipole

    order and spins

    by

    measurement

    of Il,m (Θ)

    dipole

    (l =1) quadrupole (l=2)

    z

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201244

    Gamma emission

    from

    aligned

    nuclear

    states

    Ib

    = 1

    Ia

    = 0

    Eγ (l,m)

    Ea

    Eb

    Mb10-1

    Ma0

    m = 0

    Example

    : dipole

    (l =1)

    l = 1

    m = 0z

    I1,0

    (Θ) ≈

    sin2Θ

    m = ±1z

    I1,±1

    (Θ) ≈

    1/2(1+cos2Θ)

    ΘDet.

    Ib

    = 1

    Ia

    = 0

    Eγ (l,m)

    Ea

    Eb

    Mb10-1

    Ma0

    m= ±

    1

    ΘDet.

    The

    radiation

    distribution

    informs

    on the

    spin

    orientation

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201255

    Radiation

    emitted

    by

    an ensemble

    of randomly

    oriented

    nuclear

    spins:

    Angular

    Correlations

    Theoretical

    background

    If

    = 0

    I = 1

    Ii = 0L1

    L2

    γ1

    γ2 The

    first

    γ-

    transition

    withL1I

    Det. #1

    Nuclear

    spins

    seen

    by

    Det. #1

    Observation of γ1

    = selection

    of a subgroup

    of spin

    orientationsSpin alignment

    !

    I = 1

    Ii = 0

    L1 = 1 M

    0

    0+ 1

    - 1not

    populated

    Det. #1

    m = ±1m = 0

    |Ii

    -I|

    L1

    |Ii

    + I|

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201266

    By

    observation

    of γ1 we

    selecta specific

    orientation

    of the

    spin

    I.

    The

    direction

    of γ2

    informs

    uson changes

    in the

    spin

    orientation

    while

    the

    nucleus

    is

    in the

    intermediate

    state.

    The

    second γ-

    transition

    of the

    γγ

    –cascade

    MI = 1

    If

    = 0

    L2 = 1

    0

    0+ 1

    - 1 γ

    #1

    Emission from

    an aligned

    spin

    ensemble

    0 30 60 90 1201501800.0

    0.5

    1.0coincidences (a.u.)

    angle Θ

    γ#2

    Θ

    Coinci- dences

    (Θ,∞)

    IPAC

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201277

    OBSERVATION MODES of Angular

    Correlations

    Time

    differential mode:

    TDPAC

    Half-width

    τR

    life time

    τ

    • Measurement

    of the

    anisotropy

    as a functionof the

    time the

    nucleus

    has spent

    in the

    inter-mediate

    state

    of the

    cascade

    • Time resolved

    observation

    of hyperfinefrequencies

    νL ≤

    1/ ∆τ

    Parent isotope

    I = 1

    I = 0

    I = 0

    γ1

    γ2τ

    Time

    integral mode: IPAC

    Half-width

    τR

    life time

    τ

    • Integration over

    all times

    of theintermediate

    state

    of the

    cascad

    • Time-integrated

    observation

    of hyperfine

    interactíons

    τRNco

    i(t)

    time

    Time resolution

    0 30 60 90 1201501800.0

    0.5

    1.0coincidences (a.u.)

    angle Θ

    t0

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201288

    If

    Ii

    γ1

    γ2

    τ

    = 10-9 – 10-6 s

    R(t) = N(180) –

    N(90)N(180)+N(90)

    time

    anisotropy

    The time-differential mode (TDPAC) of unperturbed γ

    -

    γ

    angular correlations

    γ1γ2Det.1

    clock startstop

    Ncoi

    (θ,t)

    Det.2

    time

    ln

    Ncoi

    (θ,t)

    θ

    = 180o

    θ

    = 90o

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201299

    The

    perturbation

    of γγ

    angular

    correlations

    by

    hyperfine

    interactions

    Det. #1D

    et. #2

    Θ

    B

    μ, I

    (i)

    Detection

    of γ1

    = selection

    of a subgroup

    of spin

    orientations→

    anisotropic

    intensity

    distribution

    of γ2

    (ii) Hyperfine

    interaction

    Larmor

    precession

    of spins= Precession

    of the

    intensity

    distribution

    of γ2

    Basic aspects:

    t = 0

    (iii) Detection

    of γ2 = spin

    orientation

    at time t 0 30 60 90 120 150 1800.0

    0.5

    1.0

    intensity (a.u.)

    angle Θ

    t = t1

    ∆Θ

    = ω

    t1)( BLrr⋅∝ μω

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201210100 2 4 6 8 10

    0.00

    0.05

    0.10

    0.15

    0.20

    Anis

    otro

    py

    time in half lifes of intermediate state

    The

    perturbation

    of γγ

    angular

    correlations

    by

    hyperfine

    interactionsThe

    time differential mode

    coincidence

    counter

    N(180,t) –

    N(90,t)N(180,t) + N(90,t)R(t) =

    ratio

    R

    time

    Elimination of the

    exponential decay

    Parent isotope

    I = 1

    I = 0

    I = 0

    γ1

    γ2

    τ

    Example

    : Magnetic

    field

    B ┴

    detector

    plane

    log

    coun

    trat

    e

    time

    N(Θ,t) = N0 e-λt

    W(Θ,t)

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121111

    Time differential Perturbed

    Angular

    Correlations

    An Early

    Example

    (1965)

    100Rh in an external

    magnetic

    field

    of 0.22 T

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201212

    0 50 100 150 200 250 300

    0.0

    0.1

    t (nsec)

    -A22

    G22

    (t)

    1300 K

    12

    ∑=

    =park

    kkkkk PtGAtW )(cos)(),( θθ

    The

    perturbation

    of angular

    correlations

    by

    static

    hyperfine

    interactions

    Magnetic

    dipole

    interaction

    2hνM

    hνM

    Gkk

    (t) = perturbation

    factor

    Electric quadrupole interaction

    EQ (ħ

    νQ

    )

    I = 5/2 ħ

    ν1

    ħ

    ν2 ħ

    ν3

    η=0

    η≠0

    181Ta in ZrO2

    0.0

    0.1

    -A22

    G22

    (t) 1400 K

    0 10 20 30 40 50

    0.0

    0.1

    t (ns)

    1530 K

    111Cd in fcc

    Co

    0 100 200 300

    0.0

    0.1

    t (ns)

    - A

    22G

    22(t) 100 K

    111Cd in hcp

    Co

    Combined

    MHFI +QI

    Dynamic

    QI

    111Cd:HfV2

    Hx

    0.0

    0.1

    0.0

    0.1

    t (ns)

    282 K -A22

    G22

    (t)275 K

    0 100 200 300

    0.0

    0.1

    500 K

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121313

    Mean life time τ of the intermediate state: 10-9 s ≤

    τ ≤

    10-6 s

    Spin I of the intermediate state: I ≥ 1

    Anisotropy: A22

    ≥ 0.05

    Intensity of the cascade

    Half- life of the mother isotope: T1/2 ≥ 1 h(Laboratory experiments)

    Coincidence experiment: data accumulation:10 min to a few days

    γγ-cascades

    for

    TDPAC measurements

    -

    required

    properties

    Number

    of suitable

    isotopes

    for

    laboratory

    experiments: ≤

    15

    I-131Hg-199Cu-62

    Re-187Pb-204m

    Ru-99Yb-172

    Se-77Mo-99Pd-100In-117Ce-140

    F-19 Coul. exc.Ta-181Cd-111

    0 100 200 300 400

    0 100 200 300 400

    PAPER

    Basis: ~ 1500 papers

    1960 - 2007

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121414

    TDPAC spectrometer

    basic

    aspects

    Present

    standard:

    Multi-detector

    arrays: up to 6 detectorsFast photomultiplier

    coupled

    to BaF2

    scintillatorsTime resolution: ~ 100 ps

    FWHM at 60Co energies

    Requirements:

    high statisticshigh detection

    efficiencyenergy

    resolutiontime resolution

    181Hf

    181Ta

    42.5 dβ-

    7/2+

    5/2+

    1/2+133 keV

    482 keVγ2

    γ1t1/2

    = 10.8 ns

    111In

    111Cd

    2.81 dEC

    7/2+

    5/2+

    1/2+

    172 keV

    247 keV

    γ1t1/2 =84 ns

    γ2

    popular

    isotopes

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121515

    Perturbed

    angular

    distribution

    (TDPAD)

    Production

    of spin

    alignment

    by

    nuclear

    reaction

    Target

    nucleus

    Ir

    pr

    Particle

    beam

    rr

    In nuclear

    reaction

    the

    angular

    momentumtransferred

    to the

    target

    nucleus

    ispreferentially

    perpendicular

    to the

    beam

    axis

    Nuclear

    reactions

    therefore

    favour

    m = 0 transitions, producing

    aligned

    nuclear

    states

    The

    subsequent

    gamma-emission

    is

    anisotropic

    MI = 1

    If

    = 0 0

    0+ 1

    - 1

    Target

    ΔM = 0

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121616

    Synchrotron radiation PAC (SRPAC)

    Sergueev,et

    al, Phys. Rev. B 73 (2006) 024203

    57Fe in the

    molecular

    glass

    former

    dibutyl

    phthalate

    DBP doped

    with

    5% mol of ferrocene

    FC enriched

    to 95% in 57Fe.

    Production

    of spin

    alignment

    by

    synchroton

    radiation

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121717

    Synchrotron-radiation–based

    perturbed

    angular

    correlations

    from

    119SnC

    . Strohm

    , I. Sergueev

    and U. van B

    ürck, EP

    L, 81 (2008) 52001

    SR stop

    start

    Counts

    vs. timeAnisotropy

    vs. time(exp. decay

    eliminated)

    Angular

    dependence

    of A22

    G22

    (t=0)

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 20121818

    Nuclear physics

    • Nuclear moments

    Condensed matter physics

    • Magnetic properties of magnetically ordered systems

    • Electric field gradients in non-cubic solids

    • Dynamic processes: Atomic motion in solids, liquids , gases

    • Phase transitions

    • Defects in Solids

    • Solid state reactions

    • Biology; chemistry

    Main areas of PAC research

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201219

    Static

    QI in Solids: Phase identification

    and phase

    transformation Example: ZrO2

    ZrO2

    phases

    monoclinic

    νq

    0η ≠ 0

    tetragonal

    ν

    q

    0η= 0

    cubic, EFG = 0

    νq

    = 0T ~ 2150 KT ~ 1450 K

    QI and PAC spectra

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201220

    Phase identification

    and phase

    transformation

    by

    QI -

    Example: ZrO2

    Phase transformations

    tetragonal

    T ~1450 K

    0,0

    0,1

    0,2

    0,0

    0,1

    0,2

    290 K - νq = 770 MHz, η = 0.36 m-ZrO2

    - A

    22G

    22(t)

    0,0

    0,1

    0,2

    1383 K - νq = 820 MHz, η = 0.0

    t-ZrO2

    0,0

    0,1

    0,2

    2120 K - c-ZrO2 + t-ZrO

    2

    0 10 20 30 40 50

    0,0

    0,1

    0,2

    t (ns)

    2160 K - νq ~ 0 MHz

    c-ZrO

    1363 K - m-ZrO2 + t-ZrO2

    PAC spectra

    0,0

    0,5

    1,0

    heating cooling

    500 1000 1500 20000,0

    0,5

    1,0

    heating cooling

    t-ZrO2

    m-ZrO2

    T (K)

    500

    600

    700

    800

    900

    1000

    1100

    tetra

    g. fr

    actio

    n m

    onoc

    l. fra

    ctio

    n

    frequ

    ency

    νq

    (MH

    z)

    0,3

    0,4

    0,5

    cub

    ic

    tetragonal monoclinic

    asy

    mm

    etry

    η

    monoclinic

    ZrO2

    phases

    νq

    0

    η ≠ 0

    ν

    q

    0

    η= 0

    cubic, EFG = 0

    T ~2150 K

    νq

    = 0

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201221

    Static QI in solids: Solid state reaction: Transformation of Zr

    metal into ZrB2

    M. Forker, W

    . Herz, U

    . Hütten, M

    . Müller', R

    . Müßeler, J . Schm

    idberger, D. S

    imon,

    A. Weingarten and S.C

    . Bedi2Nuclear Instrum

    ents and Methods m

    Physics Research A327 (1993)456-462

    Zr + BN ZrB2T

    181Hf:Zr metal

    181Hf:ZrB2

    T

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201222

    Static

    QI in solids: Defects

    in metals and semiconductors

    studied

    by

    TDPAC

    cubic

    unperturbed

    nn defect

    sharp

    QI

    Defect

    migrationenthalpy

    Probe-defectbinding

    energy

    111In in Aue-irradiationat low

    T

    Subsequentannealing

    Probes

    with

    nndefect

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201223

    fast fluctuations: τR

    > precession period 1/νab

    R ≈

    νf2

    /τR

    exp (-EA

    /kB

    T)

    fast slowlnR

    1/ T

    EAActivation energy

    Arrhenius plot: ln R vs. 1/T

    Residence timeτR

    = τR

    (0)

    exp (EA

    /kB

    T)

    a

    bνab

    Thermally activated H diffusion

    Example: Hydrogen diffusion in solids

    Time dependent

    QI → Nuclear

    relaxation; rate R 2Rab

    R2f

    )(1 τν+τν

    The

    perturbation

    of angular

    correlations

    by

    dynamic

    QI

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201224

    Hydrogen

    Diffusion

    studied

    by

    perturbed

    angular

    correlations

    Characteristic times: Residence time τR

    and PAC time window 10 ns ≤

    ∆Τ

    1 μs

    -A22

    G22

    (t)

    100 200 300 400 5000

    time (a.u.)

    τR

    >> ∆Τ:(quasi-) static, frequency

    distribution

    τR

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201225

    Dynamic QI in solids: Reorientation jumps of 111In in In3

    LaM

    . Zacate, A. Favrot, G

    . Collins, PR

    L 92 (2004) 225901

    T1/2

    = 84 ns

    111In

    111Cd

    2.81 d

    7/2+

    5/2+

    1/2+γ2

    γ1

    EFG

    static

    fast fluctuations

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201226

    PAC study

    of magnetic

    properties

    Combined

    magnetic

    + electric

    hfi

    z

    x

    yVxx

    Vyy

    Vzz Bhfβ

    α

    z‘ heQVzzQ /=• ν

    zz

    xxyy

    VVV −

    =• η

    hBg hfBM /μν =•

    γβ ,anglesEuler•

    Example: ferromagnetic

    Cobalt

    ~ 700 KCobalt: TC

    = 1390 K, structure: hcp

    fcc

    VzzS

    ß

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201227

    300K - A

    22G

    22(t) 1300 K

    1389.1 K

    450K

    500 K

    1387.9 K

    0 100 200 300

    1000 K

    0 100 200 300

    1390 K

    t (nsec) t (nsec)

    PAC spectra

    of 111Cd in Co

    Spin reorientation

    Temperature

    depedence

    of νM

    TC

    = 1391.5 Kβ

    = 0.385(5)

    critical

    exponent: β−ν=ν )/)(()( CMM TT10T

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201228

    Phase transitions

    of RCo2

    GdCo2 DyCo2Second-orderTransition

    SOT

    First-orderTransition

    FOT

    studied

    by

    measurement

    of the

    temperature

    dependence

    of the

    magnetic

    hyperfine

    field

    Rare earth

    = Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201229

    0 50 100 1500

    10

    20

    30

    40

    50

    Pr NdEr Ho Dy

    T (K)

    νM

    (MH

    z)

    0 100 200 300 4000

    10

    20

    30

    40

    50

    GdCo2 TbCo

    2 SmCo2

    ν M (

    MH

    z)

    T (K)

    The

    order of the

    magnetic

    phase

    transitions

    of RCo2deduced

    from

    the

    magnetic

    hyperfine

    field

    at 111Cd

    SOT FOT

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201230

    |Bhf

    (57Fe:Ni)| = 267.8(2.7) kG

    PAC source: 57Co in Ni

    Mössbauer: 265(5) kG

    |Bhf

    (57Fe:α-Fe)| = 330 kG

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201231

    Advantages of PAC:

    Any

    temperature

    Any

    environment

    (solid, liquid, gas)

    Low

    concentration

    of probe nuclei: 10-12

    – 10-6

    No restriction

    to low

    Small samples: 1-100 mg

    No external

    field

    or

    rf

    field

    required

    Comparison

    PAC –

    Mössbauer, NMR, NQR, NO, SH....

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201232

    Disadvantages of PAC

    I-131Hg-199Cu-62

    Re-187Pb-204m

    Ru-99Yb-172

    Se-77Mo-99Pd-100In-117Ce-140

    F-19 Coul. exc.Ta-181Cd-111

    0 100 200 300 400

    0 100 200 300 400

    PAPER

    Basis: ~ 1500 papers

    1960 - 2007

    Limited number of probes for for laboratory experiment

    Source preparation(Radiochemistry installations required)

    Legal constraints

    Probe mostly an impurity in the sample

    Complex electronic set-up

    Comparison

    PAC –

    Mössbauer, NMR, NQR, NO, SH,...

  • M. Forker, Nuclear Techniques in Solid State Resaerch , CBPF 201233

    Global PAC Activity

    Rio de JaneiroSao Paulo

    La Plata

    PullmanPenn state

    Lisbon

    Kopenhagen

    LeuvenCracow

    GermanyBonnGöttingenLeipzigSaarbrücken(Konstanz)(Berlin)

    Moscow

    Canberra

    Kyoto

    Dehli, Chandigar

    BeijingBelgrade

    South Africa

    Israel

    Mumbai

    ISOLDE/CERN

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15 Synchrotron radiation PAC (SRPAC)Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Dynamic QI in solids: Reorientation jumps of 111In in In3LaSlide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Disadvantages of PACGlobal PAC Activity