Neutron -decay with Ultra-Cold Neutrons...
Embed Size (px)
Transcript of Neutron -decay with Ultra-Cold Neutrons...

Neutron β-decay with Ultra-Cold Neutrons (UCN)
• Ultra-Cold Neutrons (UCN) provide unique system to study fundamental neutron properties
• UCN experiments have different systematics compared to cold neutron beams – Polarization process and background sources differ
significantly
• UCNA First experiment to measure neutron decay correlation - A - with UCN – First UCNA data: 12/07 (Actually 12/15-12/17/07)
– Plans for future data (6-12/08, 6-12/09)UW 10/9/2008

The Caltech UCN group
Justin ChenNick HutzlerGary ChengJenny HsiaoRiccardo SchmidKevin HickersonJunhua YuanBrad Plaster Bob CarrMichael MendenhallJianglai LiuBF

UCNA CollaborationCalifornia Institute of Technology
R. Carr, B. Filippone, K. Hickerson, J. Liu, J. Martin, M. Mendenhall, B. Plaster, R. Schmid, B. Tipton, J. Yuan
Institute Lau-LangevinP. Geltenbort
Los Alamos National LaboratoryJ. Anaya, T. J. Bowles, T. Brun, M. Fowler, R. Hill, G. Hogan, T. Ito, K. Kirch, S. Lamoreaux, C.-Y.
Liu, C. L. Morris, M. Makela, A. Pichlmaier, A. Saunders (co-spokesperson), S. Seestrom, P. Walstrom, J. Wilhelmy
North Carolina State University/TUNLH. O. Back, L. Broussard, A. T. Holley, R. K. Jain, R. W. Pattie, K. Sabourov, A. R. Young (co-
spokesperson), Y.-P. XuPetersburg Nuclear Physics Institute
A. Aldushenkov, A. Kharitonov, I. Krasnoshekova, M. Lasakov, A. P. Serebrov, A. VasilievTohoku University
S. KitagakiUniversity of Kyoto
M. Hino, T. Kawai, M. UtsuroUniversity of Washington
A. Garcia, S. Hoedl, D. Melconian, A. Sallaska, S. SjueVirginia Polytechnic Institute and State University
R. Mammei, M. Pitt, R. B. Vogelaar

Neutron Beta Decay
or in quark picture…
udd
udu
νe
e-
n
p
W-

Precision neutron decay measurements
• < 0.3% measurements can be sensitive to new physics (from loops in electroweak field theory)
Radiative Corrections
q
W
q
W
χ0

CKM Matrix and Unitarity
÷÷÷
÷÷÷
=÷÷÷
bsd
bsd
w
w
w
99.004.0005.004.097.022.0005.022.0975.0
Unitarity, , (or lack thereof) of CKM matrix tests existence of further quark generations and
possible new physics (eg. Supersymmetry)
÷÷÷
÷÷÷
=÷÷÷
bsd
VVVVVVVVV
bsd
tbtstd
cbcscd
ubusud
w
w
w
Weak eigenstates Mass eigenstates
eg. |Vud|2 + |Vus|2 + |Vub|2 = 1

• Vud in Standard Model
(from µ vs. β-decay)
Sensitivity to New Physics?Kurylov&Ramsey-Musolf
Phys. Rev. Lett. 88, 071804 (2002)
W- e-
GFVudµ- νµ
W- e-
GF d u
νe νe
µ- νµ
W- e-
νe
µ~ ν~χ0~ d
W- e-
νe
d~ u~χ0~ u
• Supersymmetric particles produce loop corrections

• a, A and B are correlations that depend on the axial and vector weak coupling constants GA and GV
What is Big A?÷÷
+Γ=Γ
ne
e
Ep.
Ad +ν
ν
Ep.nσBrrr
nσr
+νe
νe
EEp.p
arr
1 +νe
e
EExp
D νprrnσr.
Differential neutron decay rate With no e- polarization

• Γn = 1/τn is total decay rate
• Thus A and τn gives Vud
÷÷
+Γ=Γ
ne
e
Ep.
Ad +ν
ν
Ep.nσBrrr
nσr
+νe
νe
EEp.p
arr
1 +νe
e
EExp
D νprrnσr.

Uncertainties in Vud
Electroweak corrections(Z0 and hadron loops) Neutron has potential to
yield most precise resultRecently cut in half by Marciano & Sirlin

CKM Summary:
New τn !!
UC
NA
Particle Data Group recommended

Why UCNA?• For accurate measurement of A & GA/GV (and Vud
via neutron lifetime) need to characterize and minimize systematic uncertainties
• Different experimental approaches are critical to reducing systematic uncertainties
– PERKEO II/III • Supermirror polarizer • Cold neutron beam from CW reactor • Scintillator β detector
– UCNA • Superconducting magnet polarizer • Trapped UCN from pulsed proton beam • Scintillator & MWPC β detector

UCN Polarization via high B-field
“High field seekers”
“Low field seekers”

Reduced Background with pulsed Source of UCN
PERKEO II (99)A-correlation experiment(at Reactor)
UCNA data12/07
(pulsed source)
UCNA Proposal4/00
(pulsed source)

What are UCN ?– Very slow neutrons
(v < 8 m/s ’ λ > 500 Å )that cannot penetrate into
certain materials Neutrons can be trapped in bottles or by magnetic field

UCN Properties
g3m
UCN

The coherent attractive nuclear potential can lead to a repulsive pseudopotential (Fermi potential) if a > 0
Attractive potential can also lead to neutron absorption but often Lmfp >> λn (~10-5 probability per bounce)
For EUCN < VF, UCN are trapped
EUCN
Fermi Pseudo-potential

Typical Fermi PotentialsMaterial VF (neV)
Al 54
58Ni 350
Ti - 48
Cu 171
Stainless Steel 188
Diamond-Like Carbon (DLC)
282
neutron velocityvn ~ 8 m/s

How to make UCN?• Conventional Approach:
– Start with neutrons from nuclearreactor core
– Use collisions with nuclei to slow down neutron
– Record density at Institut Laue-Langevin (ILL) reactor in Grenoble (40 UCN/cm3)
Some of neutron’s energy lostto nuclear recoil in each collision Gives a Maxwell-
Boltzmann Distribution

Higher Density UCN Sources• Use non-equilibrium system
(aka Superthermal)– Superfluid 4He (T<1K)
Very few 11K phonons if T<1K ∴ minimal upscattering
11K (9Å ) incidentneutron produces a phonon & becomes a UCN
Used in on-goingNIST τn Experiment
(neutron)
& Future newNeutron EDM exps.

– Solid deuterium (SD2) Gollub & Boning(83)
– Small absorption probability– Faster UCN production– Small Upscattering if T < 6K
UCN
Phonon
Cold Neutron
Can be optimally used at a pulsed source (e.g. accelerator-based “spallation” neutron source)

Schematic of prototype SD2 source
Liquid N2
Be reflector
Solid D2
77 K polyethylene
Tungsten Target
58Ni coated stainless guide
UCN Detector
Flapper valve
LHe
Caltech, LANL, NCState, Princeton, VaTech, Russia, France, JapanCollaboration

New World Record UCN
Density
Measurements of Ultra Cold Neutron Lifetimes in Solid Deuterium [PRL 89,272501 (2002)]
Demonstration of a solid deuterium source of ultra-cold neutrons [Phys. Lett. B 593, 55 (2004)]
Previous record for bottled UCN = 41 UCN/cm3 (at ILL)

UCNA Experiment Design
UCN Decay Trap
(7.0 T & Adiabatic Fast Passage Spin Flipper in 1T)
From

Asymmetry Measurement with UCN
e-
n
θ
UCNA

Overview of UCNA experiment
• SD2 Superthermal UCN source
• UCN guides– Stainless Steel, Cu, Diamond-coated Quartz
• Polarizer and spin-flipper system
• Spectrometer & β-decay detectors
• First data...

UCNA Experiment Layout
Superconducting Spectrometer
Electron Detectors
Neutron Polarizing Magnets
UCN Source

Liquid N2
Be reflector
Solid D2
77 K poly
Tungsten Target
LHe
UCNA experiment

UCNA SD2 source
Solid Deuterium
Flapper Valve
Tungsten TargetProton bunch

UCN Guides
• From source through first polarizing magnet = Stainless Steel– “Dairy Guide”– May be depolarizing (mildly ferromagnetic)
• Through AFP spin-flipper = Diamond coated Quartz
• Into 1T spectrometer = Electro-polished Copper
mai
ntai
ns n
eutro
n po
lariz
aion

UCNA neutron polarization• Pre-polarizing 6T magnet allows good
UCN transport through vacuum window(isolates source and detector system for safety
• 2nd 7T magnet further filters UCN and allows for spin flip – Adiabatic Fast Passage (AFP) resonator
• UCNA Polarimetry = measuring depolarized fraction – When polarization is very high only modest
measurement of depolarization fraction needed

Polarizer/AFP Spin Flipper
e-7T

Depolarization Measurements
Crossed polarizer: Uses AFP to flip UCN to low field seekers
UCN inSample during bottle emptying: change state of AFP at end of run cycle and monitor depolarized UCN leaking back to detector
UCN in
7T
Polarizer/AFP7T
AFP
UCN detector

UCN transmission through “crossed polarizers”
vs AFP frequency

Spin-Flipper Tuning during β-decaySpectrometerAFP
Magnetized foil
UCN detector
Side View
Polarizer

Depolarization Trapping (in situ)PolSwitcher SpecAFP
LOAD ≅ 1hr CLEAN 150s UNLOAD 100s
AFP OFF AFP ONAFP OFFBACKGROUND
AFP ONAFP ON AFP ON AFP OFF AFP OFF
Flow-Through Leakage
α (UCN from B+C+D) + β (UCN from A+Switcher Leakage)
Draining of A+B+C+D

Superconducting Spectrometer
Neutron Decay Tube
Decay Electron Detectors
1 Tesla Central Fieldwith 0.6 T field expansion to
suppress backscattering

Solenoid Bore • 35 cm diameter SS warm bore• 12.5 cm diameter electropolished Cu
decay tube• Be-coated Mylar endcap windows
(2.5 µm in 07, 0.7 µm in 08)
• 110 cm diameter Lucite β collimator
Decay Tube
β-de
tect
or
β-de
tect
or

β-detector System• Requirements:
– Low Background, Reasonable Energy Resolution, Minimal e- Backscattering
• Design:
25 or 6 µm Entrance Window
Low Pressure MultiWire Proportional Chamber MWPC (100 torr)
3.5 mm Scintillator e-
25 or 6 µm Exit Window
Scintillator + MWPC reduces room background > factor of 25

Full Detector Schematic
MWPC Preamp Cards
e-PMT
PMT
Fe Magnetic Shields (also vacuum seal)
100 torr Neopentane100 torr N2

Assembled Detector
PMT
PMT

Detector Studies
• At Caltech with 130 keV electron gun
• At LANSCE with 113Sn (Eβ ~ 370 keV) and 207Bi (Eβ ~ 505 & 995 keV) sources
• At LANSCE with neutron β-decay

Detailed Backscattering studies completed at Caltech
(comparison with GEANT4 and PENELOPE Monte Carlo)
"New measurements and quantitative analysis of electron backscattering in the energy range of neutron beta-decay", J.W. Martin et al., Phys. Rev. C. 73, 015501 (2006).
"Measurement of electron backscattering in the energy range of neutron beta decay", J.W. Martin et al., Phys. Rev. C 68, 055503 (2003).

Spectrometer studies at LANSCE with 113Sn source in 1T field
Fiducial VolumeCut
σ ~ 1.5mm

Cosmic ray induced events (x,y)
80 mm diameter fiducial cut

UCN Decay Events (x,y)
80 mm diameter fiducial cut
110 mm diameter β collimator

LANSCE
UCN Source (Area B)
Proton Linac (½ mile long): 0.8 GeV, 1-2 mA
(Los Alamos Neutron Science CEnter)

Recent Pictures of LANSCE Area B (10/5/08)

Recent Pictures of LANSCE Area B

Liquid He “farm” (~ 2000 liters/day)

UCN Switcher

UCN “Accelerator”...

UCNA-07 results• First measurements of depolarized fraction
• “Crossed polarizers” & trapped depol. Neutrons
• Detailed measurements of UCN β-decay spectra
• First measurements of UCN asymmetry
Note: All 07 data acquired with• 2X25 mm b detector windows (ΔE ~ 20 keV)• 2.5 mm endcap windows • < 50 hours total acquisition time Fo
r rob
ustn
ess
& “s
afet
y”

Statitistical sensitivity of UCNA
• Experiment can only run on nights & weekends (Due to nuclear weapon stockpile stewardship
studies – proton radiography)• Modest downtime for polarization flips &
depolarization measurements• A sensitivity: σA/A ~ 3%/month/sqrt(Hz)
– < 0.2 Hz in 05– ~ 1.7 Hz in 06– ~ 7 Hz in 07– ~ 18 Hz in 08
PERKO II 02: 0.7%UCNA goal: <0.5%

Reduced Background with pulsed Source of UCN
PERKEO II (99)A-correlation experiment(at Reactor)
UCNA data12/07
UCNA Proposal4/00
(pulsed source)
Hz

Room Background
Scintillator rate increases during beam pulses

First results from UCNA

-0.1500
-0.1125
-0.0750
-0.0375
0
1,970 1,980 1,990 2,000 2,010
World Asymmetry data
TIME (year)
A
07 08 09 UCNA

UCNA(07) UCNA(08) PERKEOII(02)Systematic Corr. Error Corr. Error Corr. Error
Polarization <0.5% 1.0% <0.2% 0.2% 1.1% 0.3%
Spin-flip <0.2% 0.1% 0.3% 0.3%
Background <0.1% 0.2% <0.1% 0.1% 0.5% 0.3%
Detector
Linearity 1.5% <0.3% 0.2%
Width/Ped 0.1% <0.1% 0.1%
Drifts 0.2% <0.1% 0.006%
Edge Effects -0.24% 0.1%
Angle Effects -1.6% 0.5% <-0.4% 0.2%
e- Trajectories
Mirror Effect -0.06% 0.06% -0.06% 0.06% 0.09% 0.02%
Backscattering
1.1% 0.5% 0.5% 0.2% 0.2% 0.1%
Statistics 4.0% <0.8% 0.45%
Total 0.5 +/- 4.4% 0.5% +/- 0.9% 2.0 +/- 0.7 %
Preliminary Projected
Asymmetry Systematics

Improvements for 2008• Thinner endcap/detector windows
– 2.5 µm/25 µm 0.7 µm/6 µm– Reduces systematic corrections/uncertainties
• Improved energy calibrations– Three sources (113Sn, 85Sr, 207Bi, 114In?) and variable pulsed LED
system – Reduces systematic uncertainties
• Higher beam current & more hermetic UCN guides– Typically running at 15-18Hz compared to 7 Hz in 2007
• Plans for 2009 - DLC Coated decay tube– Raises spectrometer Fermi potential– Should ~ double β-decay rate

Total counts vs Time (08)
2007 Run

Beyond 2008 with UCN
• Big A measurement with <0.5% precision
• Neutron lifetime with “Halbach” magnetic array
• Correlation experiments with Si detectors
• a & B measurements possible with proton detection

Summary • High density UCN source developed at
LANL• First UCN correlation experiment
underway• Future high precision measurements
possible with UCN