Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009...
-
Author
harriet-turner -
Category
Documents
-
view
220 -
download
0
Embed Size (px)
Transcript of Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009...

04/20/23
Neutrinos in Cosmology (I)
Sergio Pastor (IFIC Valencia)Universidad de Buenos Aires
Febrero 2009
ν

Neutrinos in Cosmology
1st lecture
Introduction: neutrinos and the History of the Universe

This is a neutrino!

T~MeVt~sec
Primordial
Nucleosynthesis
Decoupled neutrinos(Cosmic Neutrino
Background or CNB)
Neutrinos coupled by weak
interactions

At least 2
species are
NR today
Relativistic neutrinos
T~
m
Neutrino cosmology is interesting because Relic neutrinos are very abundant:
• The CNB contributes to radiation at early times and to matter at late times (info on the number of neutrinos and their masses)
• Cosmological observables can be used to test non-standard neutrino properties

04/20/23
Relic neutrinos influence several cosmological epochs
T < eVT ~ MeV
Formation of Large Scale Structures
LSS
Cosmic Microwave Background
CMB
Primordial
Nucleosynthesis
BBN
No flavour sensitivity Neff & mννevs νμ,τ Neff

Basics of cosmology: background evolution
Introduction: neutrinos and the History of the Universe
Relic neutrino production and decoupling
Neutrinos in Cosmology
Neutrinos and Primordial Nucleosynthesis
1st lecture

Neutrinos in Cosmology
Massive neutrinos as Dark Matter
Effects of neutrino masses on cosmological observables
Bounds on mν from CMB, LSS and other data
Bounds on the radiation content (Nν)
Future sensitivities on mν and Nν from cosmology
2nd lecture

Suggested References
BooksModern Cosmology, S. Dodelson (Academic Press, 2003)
The Early Universe, E. Kolb & M. Turner (Addison-Wesley, 1990)
Kinetic theory in the expanding Universe, Bernstein (Cambridge U., 1988)
Recent reviewsNeutrino Cosmology, A.D. Dolgov,
Phys. Rep. 370 (2002) 333-535 [hep-ph/0202122]
Massive neutrinos and cosmology, J. Lesgourgues & SP, Phys. Rep. 429 (2006) 307-379 [astro-ph/0603494]
Primordial Neutrinos, S. HannestadAnn. Rev. Nucl. Part. Sci. 56 (2006) 137-161 [hep-ph/0602058]
Primordial Nucleosynthesis: from precision cosmology to fundamental physicsF. Iocco et al, arXiv:0809.0631

Eqs in the SM of Cosmology
22222
2
2222 sin
1θdφrdθr
kr
dra(t)dtdxdxgds νμ
μν
gGTRgRG 82
1
The FLRW Model describes the evolution of the isotropic and homogeneous expanding Universe
a(t) is the scale factor and k=-1,0,+1 the curvature
Einstein eqs
Energy-momentum tensor of a perfect fluid
pguupT )(

Eqs in the SM of Cosmology
)(3.
ppHdt
d
Eq of state p=αρ ρ = const a -3(1+α)
Radiation α=1/3 Matter α=0 Cosmological constant α=-1 ρR~1/a4 ρM~1/a3 ρΛ~const
2
2.
2
3
8)(
a
kG
a
atH
00 component
(Friedmann eq)
H(t) is the Hubble parameterρ=ρM+ρR+ρΛ
1)( 22
atH
k
ρcrit=3H2/8πG is the critical density
Ω= ρ/ρcrit

Evolution of the Universe
)3(3
4..
pG
a
a
accélération
accélération
décélération lente
décélération rqpide
accélération
accélération
décélération lente
décélération rqpide
inflation radiation matière énergie noire
acceleration
acceleration
slow deceleration
fast deceleration
inflation RD (radiation domination) MD (matter domination) dark energy domination
)3(3
4..
pG
a
a
a(t)~t1/2 a(t)~t2/3 a(t)~eHt

04/20/23
Evolution of the background densities: 1 MeV → now
3 neutrino species
with different masses

04/20/23
Evolution of the background densities: 1 MeV → now
photons
neutrinos
cdm
baryons
Λ
m3=0.05 eV
m2=0.009 eV
m1≈ 0 eV
Ωi= ρi/ρcrit

Equilibrium thermodynami
cs
Particles in equilibriumwhen T are high and interactions effective
T~1/a(t)
Distribution function of particle momenta in equilibrium
Thermodynamical variables
VARIABLERELATIVISTIC
NON REL.BOSE FERMI

T~MeVt~sec
Primordial
Nucleosynthesis
Neutrinos coupled by weak
interactions(in equilibrium)
1e1
T)(p,f p/T

-αα
-α
-α
βαβα
βαβα
ee
ee
νν
νν
νννν
νννν
Tν = Te = Tγ
1 MeV < T < mμ
Neutrinos in Equilibrium

Neutrino decoupling
As the Universe expands, particle densities are diluted and temperatures fall. Weak interactions become ineffective to keep neutrinos in good thermal contact with the e.m. plasma
Rate of weak processes ~ Hubble expansion rate
MeV T M
πρT G
M
πρ n , HσΓ ν
decp
RF
p
Rww 1
3
8
3
8v
252
22
Rough, but quite accurate estimate of the decoupling temperature
Since νe have both CC and NC interactions with e±
Tdec(νe) ~ 2 MeVTdec(νμ,τ) ~ 3 MeV

T~MeVt~sec
Free-streaming neutrinos
(decoupled)Cosmic Neutrino
Background
Neutrinos coupled by weak
interactions(in equilibrium)
Neutrinos keep the energy spectrum of a relativistic
fermion with eq form
1e1
T)(p,f p/T

At T~me, electron-positron pairs annihilate
heating photons but not the decoupled neutrinos
γγ -ee
Neutrino and Photon (CMB) temperatures
1e1
T)(p,fp/T
1/3
411
T
T
ν
γ

At T~me, electron-positron pairs annihilate
heating photons but not the decoupled neutrinos
γγ -ee
Neutrino and Photon (CMB) temperatures
1e1
T)(p,fp/T
1/3
411
T
T
ν
γ
Photon temp falls
slower than 1/a(t)

• Number density
• Energy density
323
3
11
3(6
11
3
2 CMBγννν Tπ
)ζn)(p,Tf
π)(
pdn
nm
T
)(p,Tfπ)(
pdmp
i
ii
CMB
νν
43/42
3
322
11
4
120
7
2
Massless
Massive mν>>T
Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species 1e
1T)(p,f p/T
The Cosmic Neutrino Background

The Cosmic Neutrino Background
• Number density
• Energy density
323
3
11
3(6
11
3
2 CMBγννν Tπ
)ζn)(p,Tf
π)(
pdn
nm
T
)(p,Tfπ)(
pdmp
i
ii
CMB
νν
43/42
3
322
11
4
120
7
2
Massless
Massive
mν>>T
Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species 1e
1T)(p,f p/T
At present 112 per flavour cm )( -3
Contribution to the energy density of the Universe
eV 94.1
mh Ω i
i2
ν
52 101.7h Ω ν

At T<me, the radiation content of the Universe is
Relativistic particles in the Universe
311
4
8
71
158
73
15
3/44
24
2
r TT

At T<me, the radiation content of the Universe is
Effective number of relativistic neutrino speciesTraditional parametrization of the energy densitystored in relativistic particles
Relativistic particles in the Universe
data) (LEP 008.0984.2 N# of flavour neutrinos:

• Extra radiation can be:
scalars, pseudoscalars, sterile neutrinos (totally or partially thermalized, bulk), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles…
• Particular case: relic neutrino asymmetries
Constraints from BBN and from CMB+LSS
Extra relativistic particles

At T<me, the radiation content of the Universe is
Effective number of relativistic neutrino speciesTraditional parametrization of the energy densitystored in relativistic particles
Neff is not exactly 3 for standard neutrinos
Relativistic particles in the Universe
data) (LEP 008.0984.2 N# of flavour neutrinos:

But, since Tdec(ν) is close to me, neutrinos share a small part of the entropy release
At T~me, e+e- pairs annihilate heating photonsγγ -ee
Non-instantaneous neutrino decoupling
fν=fFD(p,Tν)[1+δf(p)]

Momentum-dependent Boltzmann equation
9-dim Phase Space ProcessPi conservation
Statistical Factor
),(),( 111
tpItpfdp
dHp
dt
dcoll
+ evolution of total energy density:

νe
ν,
δf x10
1e
pp/T
2

Neff
Instantaneous decoupling
1.40102 3
SM+3ν mixing(θ13=0)
1.3978 3.046
0/TT fin
Mangano et al, NPB 729 (2005) 221
Non-instantaneous neutrino decoupling
Dolgov, Hansen & Semikoz, NPB 503 (1997) 426Mangano et al, PLB 534 (2002) 8

Changes in CNB quantities
• Contribution of neutrinos to total energy density today (3 degenerate masses)
• Present neutrino number density
c
3m0
94.12h2 eV2 2eV 20
14.93
3
h
m
n 335.7 cm-3
n 339.3 cm-3

Neff varying the neutrino decoupling temperatureNeff varying the neutrino decoupling temperature

T~MeVt~sec
Primordial
Nucleosynthesis
Decoupled neutrinos(Cosmic Neutrino
Background or CNB)
Neutrinos coupled by weak
interactions

Produced elements: D, 3He, 4He, 7Li and
small abundances of others
BBN: Creation of light
elements
Theoretical inputs:

Range of temperatures: from 0.8 to 0.01 MeV
BBN: Creation of light elements
n/p freezing and neutron decay
Phase I: 0.8-0.1 MeVn-p reactions

BBN: Creation of light elements
0.03 MeV
0.07 MeV
Phase II: 0.1-0.01 MeVFormation of light nuclei starting from D
Photodesintegrationprevents earlier formation for temperatures closer to nuclear binding energies

BBN: Measurement of Primordial abundances
Difficult task: search in astrophysical systems with chemical evolution as small as possible
Deuterium: destroyed in stars. Any observed abundance of D is a lower limit to the primordial abundance. Data from high-z, low metallicity QSO absorption line systems
Helium-3: produced and destroyed in stars (complicated evolution)Data from solar system and galaxies but not used in BBN analysis
Helium-4: primordial abundance increased by H burning in stars. Data from low metallicity, extragalatic HII regions
Lithium-7: destroyed in stars, produced in cosmic ray reactions.Data from oldest, most metal-poor stars in the Galaxy

Fields & Sarkar PDG 2006
BBN: Predictions vs Observations
after WMAP5ΩBh2=0.02265±0.00059

Effect of neutrinos on BBN 1. Neff fixes the expansion rate during BBN
(Neff)>0 4He
Burles, Nollett & Turner 1999
2p3M
8π H
3.4 3.2
3.0
2. Direct effect of electron neutrinos and antineutrinos on the n-p reactions

BBN: allowed ranges for Neff
Mangano et al, JCAP 0703 (2007) 006
Using 4He + D data (95% CL)
1.41.2 eff 3.1N
2B10
B10 h274Ω
10
/nnη
γ

Exercises: try to calculate…
• The present number density of massive/massless neutrinosn
in cm-3
• The present energy density of massive/massless neutrinos
and find the limits on the total neutrino mass from
and m
0
• The final ratio T/Tusing the conservation of entropy density before/after e± annihilations
• The decoupling temperature of relic neutrinos using
• The evolution of b,cdm)with the expansion for (3,0,0), (1,1,1) and (0.05,0.009,0) [masses in eV]
• The value of Neff if neutrinos decouple at Tdec in [5,0.2] MeV

End of 1st lecture