Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive...

104
Neutrinoless Double Beta Decay: Theory Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M -1 m D v T R 1

Transcript of Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive...

Page 1: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Neutrinoless Double Beta Decay: Theory

Werner Rodejohann

SSI 2015

17/08/15 MANITOPMassive Neutrinos: Investigating their

Theoretical Origin and Phenomenology

mv = mL - mD M -1

mD

v

T

R

1

Page 2: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Neutrinos. . .

. . .still interesting. . .

2

Page 3: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

What is Neutrinoless Double Beta Decay?

(A,Z) → (A,Z + 2) + 2 e− (0νββ)

• second order in weak interaction, Γ ∝ G4F Q5 ⇒ rare!

• not to be confused with (A,Z) → (A,Z + 2) + 2 e− + 2 νe (2νββ)

(Γ ∝ G4F Q11, but occurs more often. . .)

3

Page 4: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Need to forbid single β decay:

•• ⇒ even/even → even/even

• either direct (0νββ) or two simultaneous decays with virtual (energetically

forbidden) intermediate state (2νββ)

4

Page 5: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

'(�

����

�)#�*

+

��,�������������������������-��,�������������������������-

Slide by A. Giuliani, see lecture by Lisa Kaufman

5

Page 6: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

• 35 candidate isotopes

• 10 are interesting: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te,136Xe, 150Nd

• Q-value vs. natural abundance vs. reasonably priced enrichment

vs. association with a well controlled experimental technique vs. . .

⇒ no superisotope

0

5

10

15

20

25

30

35

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

Natu

ral abundance [%

]

Isotope

Natural abundance of different 0νββ candidate Isotopes

0

2

4

6

8

10

12

14

16

18

20

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

G0

ν [10

-14 y

rs-1

]

Isotope

G0ν for 0νββ-decay of different Isotopes

T 0ν1/2 ∝ 1/a T 0ν

1/2 ∝ Q−5

6

Page 7: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Neutrinoless Double Beta Decay

(A,Z) → (A,Z + 2) + 2 e− (0νββ) ⇒ Lepton Number Violation

• Standard Interpretation (neutrino physics)

• Non-Standard Interpretations (BSM 6= neutrino physics)

Int. J. Mod. Phys. E20, 1833 (2011) [1106.1334]; J. Phys. G39, 124008

(2012) [1206.2560]; 1507.00170

7

Page 8: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Why should we probe Lepton Number Violation?

• L and B accidentally conserved in SM

• effective theory: L = LSM + 1Λ LLNV + 1

Λ2 LLFV,BNV,LNV + . . .

• baryogenesis: B is violated

• B,L often connected in GUTs

• GUTs have seesaw and Majorana neutrinos

• (chiral anomalies: ∂µJµB,L = cGµν G

µν 6= 0 with JBµ =

∑qi γµ qi and

JLµ =

∑ℓi γµ ℓi)

⇒ Lepton Number Violation as important as Baryon Number Violation

0νββ is NOT a neutrino mass experiment!!

8

Page 9: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Upcoming/running experiments: exciting time!!

best limit was from 2001, improved 2012

Name Isotope Source = Detector; calorimetric with Source 6= Detector

high ∆E low ∆E topology topology

AMoRE 100Mo X – – –

CANDLES 48Ca – X – –

COBRA 116Cd (and 130Te) – – X –

CUORE 130Te X – – –

DCBA/MTD 82Se / 150Nd – – – X

EXO 136Xe – – X –

GERDA 76Ge X – – –

CUPID 82Se / 100Mo / 116Cd / 130Te X – – –

KamLAND-Zen 136Xe – X – –

LUCIFER 82Se / 100Mo / 130Te X – – –

LUMINEU 100Mo X – – –

MAJORANA 76Ge X – – –

MOON 82Se / 100Mo / 150Nd – – – X

NEXT 136Xe – – X –

SNO+ 130Te – X – –

SuperNEMO 82Se / 150Nd – – – X

XMASS 136Xe – X – –

see lecture by Lisa Kaufman

9

Page 10: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Interpretation of Experiments

Master formula:

Γ0ν = Gx(Q,Z) |Mx(A,Z) ηx|2

• Gx(Q,Z): phase space factor

• Mx(A,Z): nuclear physics

• ηx: particle physics

10

Page 11: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Interpretation of Experiments

Master formula:

Γ0ν = Gx(Q,Z) |Mx(A,Z) ηx|2

• Gx(Q,Z): phase space factor; calculable

• Mx(A,Z): nuclear physics; problematic

• ηx: particle physics; interesting

11

Page 12: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Interpretation of Experiments

Master formula:

Γ0ν = Gx(Q,Z) |Mx(A,Z) ηx|2

• Gx(Q,Z): phase space factor, typically Q5

• Mx(A,Z): nuclear physics; factor 2-3 uncertainty

• ηx: particle physics; many possibilities

12

Page 13: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Standard Interpretation

Neutrinoless Double Beta Decay is mediated by light and massive Majorana

neutrinos (the ones which oscillate) and all other mechanisms potentially leading

to 0νββ give negligible or no contribution

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

prediction of (100− ǫ)% of all neutrino mass mechanisms

(lecture by Andre De Gouvea)

13

Page 14: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Paths to Neutrino Mass

approach ingredientquantum number

of messengerL mν scale

“SM”

(Dirac mass)RH ν NR ∼ (1, 0) hNRΦL hv h = O(10−12)

“effective”

(dim 5 operator)

new scale

+ LNV– hLc ΦΦL h v2

ΛΛ = 1014 GeV

“direct”

(type II seesaw)

Higgs triplet

+ LNV∆ ∼ (3,−2) hLc∆L + µΦΦ∆ hvT Λ = 1

hµM2

“indirect 1”

(type I seesaw)

RH ν

+ LNVNR ∼ (1, 0) hNRΦL + NRMRNc

R(hv)2

MRΛ = 1

hMR

“indirect 2”

(type III seesaw)

fermion triplets

+ LNVΣ ∼ (3, 0) hΣLΦ + TrΣMΣΣ

(hv)2

MΣΛ = 1

hMΣ

plus seesaw variants (linear, double, inverse,. . .)

plus radiative mechanisms

plus extra dimensions

plusplusplus

14

Page 15: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

• U2ei from charged current

• mi/Ei from spin-flip and if neutrinos are Majorana particles

amplitude proportional to coherent sum (“effective mass”)

|mee| =∣∣∑

U2ei mi

∣∣

m/E ≃ eV/100 MeV is tiny: only NA can save the day!

15

Page 16: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Dirac vs. Majorana

in V −A theories: observable difference always suppressed by (m/E)2

• In terms of degrees of freedom (helicity and particle/antiparticle):

νD = (ν↑, ν↓, ν↑, ν↓) versus νM = (ν↑, ν↓)

• weak interactions act on chirality (left-/right-handed)

• chirality is not a good quantum number (“spin flip”): L =↓ +mE ↑

• Dirac:

– what we produce from a W− is ℓ−(ν↑ +mE ν↓)

– the ν↓ CANNOT interact with another W− to generate another ℓ−:

∆L = 0

• Majorana:

– what we produce from a W− is ℓ−(ν↑ +mE ν↓)

– the ν↓ CAN interact with another W− to generate another ℓ−: ∆L = 2

⇒ amplitude ∝ (m/E) ⇒ probability ∝ (m/E)2

16

Page 17: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Dirac vs. Majorana

• Z-decay:

Γ(Z → νDνD)

Γ(Z → νMνM)≃ 1− 3

m2ν

m2Z

• Meson decays

BR(K+ → π− e+ µ+) ∝ |meµ|2 =∣∣∣

Uei Uµi mi

∣∣∣

2

∼ 10−30

( |meµ|eV

)2

• neutrino-antineutrino oscillations

P (να → νβ) =1

E2

∣∣∣∣∣∣

i,j

UαjUβjU∗αiU

∗βi mimj e−i(Ej−Ei)t

∣∣∣∣∣∣

17

Page 18: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

The effective mass

Im

Rem

mm

ee

ee

ee

(1)

(3)

(2)

| |

| || | e

e.

.

eem

2iβ2iα

Amplitude proportional to coherent sum (“effective mass”):

|mee| ≡∣∣∑

U2eimi

∣∣ =

∣∣|Ue1|2 m1 + |Ue2|2 m2 e

2iα + |Ue3|2 m3 e2iβ

∣∣

= f(θ12, |Ue3|,mi, sgn(∆m2

A), α, β)

7 out of 9 parameters of neutrino physics!

18

Page 19: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Fix known things, vary unknown things. . .

m21

m22

m23

m23

m22

m21

∆m232

∆m231

∆m221

∆m221

νeνµ

ντ

normal invertiert

19

Page 20: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

The usual plot

20

Page 21: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Alternative processes

The lobster:

BR(K+ → π− e+ µ+) ∝ |meµ|2 =∣∣∣

Uei Uµi mi

∣∣∣

2

∼ 10−30

( |meµ|eV

)2

21

Page 22: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

The usual plot

(life-time instead of |mee|)

0.0001 0.001 0.01 0.1

mlight (eV)

1026

1028

1030

1032

[T1

/2] ν

(yrs

)Normal

0.0001 0.001 0.01 0.1Excluded by HDM

Inverted

22

Page 23: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Which mass ordering with which life-time?

Σ mβ |mee|NH

∆m2A

∆m2⊙ + |Ue3|2∆m2

A

∣∣∣

∆m2⊙ + |Ue3|2

∆m2Ae

2i(α−β)∣∣∣

≃ 0.05 eV ≃ 0.01 eV ∼ 0.003 eV ⇒ T 0ν1/2

>∼ 1028−29 yrs

IH 2√

∆m2A

∆m2A

∆m2A

1− sin2 2θ12 sin2 α

≃ 0.1 eV ≃ 0.05 eV ∼ 0.03 eV ⇒ T 0ν1/2

>∼ 1026−27 yrs

QD 3m0 m0 m0

1− sin2 2θ12 sin2 α

>∼ 0.1 eV ⇒ T 0ν1/2

>∼ 1025−26 yrs

23

Page 24: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Plot against other observables

0.01 0.1mβ (eV)

10-3

10-2

10-1

100

<m

ee>

(e

V)

Normal

CPV(+,+)(+,-)(-,+)(-,-)

0.01 0.1

Inverted

CPV(+)(-)

θ12

10-3

10-2

10-1

100

<m

ee>

(e

V)

0.1 1

Σ mi (eV)

Normal

CPV(+,+)(+,-)(-,+)(-,-)

0.1 1

Inverted

CPV(+)(-)

Complementarity of |mee| = U2ei mi , mβ =

|Uei|2 m2i and Σ =

∑mi

24

Page 25: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

CP violation!

Dirac neutrinos!

something else does 0νββ!

25

Page 26: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Neutrino Mass

m(heaviest) >∼√

|m23 −m2

1| ≃ 0.05 eV

3 complementary methods to measure neutrino mass:

Method observable now [eV] near [eV] far [eV] pro con

Kurie√

|Uei|2 m2i

2.3 0.2 0.1model-indep.; final?;

theo. clean worst

Cosmo.∑

mi 0.7 0.3 0.05best; systemat.;

NH/IH model-dep.

0νββ |∑

U2eimi| 0.3 0.1 0.05

fundament.; model-dep.;

NH/IH theo. dirty

see lectures by Alessandro Melchiorri and Joe Formaggio

26

Page 27: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Recent Results

• 76Ge:

– GERDA: T1/2 > 2.1× 1025 yrs

– GERDA + IGEX + HDM: T1/2 > 3.0× 1025 yrs

• 136Xe:

– EXO-200: T1/2 > 1.1× 1025 yrs (first run with less exposure: T1/2 > 1.6 × 1025 yrs. . .)

– KamLAND-Zen: T1/2 > 2.6× 1025 yrs

Xe-limit is stronger than Ge-limit when:

TXe > TGeGGe

GXe

∣∣∣∣

MGe

MXe

∣∣∣∣

2

yrs

27

Page 28: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Current Limits on |mee|

NME 76Ge 136Xe

GERDA comb KLZ comb

EDF(U) 0.32 0.27 0.13 –

ISM(U) 0.52 0.44 0.24 –

IBM-2 0.27 0.23 0.16 –

pnQRPA(U) 0.28 0.24 0.17 –

SRQRPA-A 0.31 0.26 0.23 –

QRPA-A 0.28 0.24 0.25 –

SkM-HFB-QRPA 0.29 0.24 0.28 –

Bhupal Dev, Goswami, Mitra,

W.R., Phys. Rev. D88

GERDA

28

Page 29: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Generalization. . .

29

Page 30: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

From life-time to particle physics: Nuclear Matrix Elements

30

Page 31: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

From life-time to particle physics: Nuclear Matrix Elements

SM vertex

Nuclear Process Nucl

Σi

νiUei

e

W

νi

e

W

Uei

Nucl

• 2 point-like Fermi vertices; “long-range” neutrino exchange;

momentum q ≃ 1/r ≃ 0.1 GeV

• NME ↔ overlap of decaying nucleons. . .

• different approaches (QRPA, NSM, IBM, GCM, pHFB) imply uncertainty

• plus uncertainty due to model details

31

Page 32: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

typical model for NME: set of single particle states with a number of possible

wave function configurations; obtained by solving Dirac equation in a mean

background field; interaction known, treatment of fields differs

• Quasi-particle Random Phase Approximation (QRPA) (many single particle states, few

configurations)

• Nuclear Shell Model (NSM) (many configurations, few single particle states)

• Interacting Boson Model (IBM) (many single particle states, few configurations)

• Generating Coordinate Method (GCM) (many single particle states, few configurations)

• projected Hartree-Fock-Bogoliubov model (pHFB)

tends to overestimate NMEs

tends to underestimate NMEs

32

Page 33: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

From life-time to particle physics: Nuclear Matrix Elements

48Ca

76Ge

82Se

94Zr

96Zr

98Mo

100Mo

104Ru

110Pd

116Cd

124Sn

128Te

130Te

136Xe

150Nd

154Sm

0

2

4

6

8

M0ν

(R)QRPA (Tü)SMIBM-2PHFBGCM+PNAMP

0

2

4

6

8

10

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

Isotope

NSMQRPA (Tue)

QRPA (Jy)IBMIBM

GCMPHFB

Pseudo-SU(3)

M′0ν

76 82 96 100 128 130 136 150

A

0

1

2

3

4

5

6

7

8GCM

IBM

ISM

QRPA(J)

QRPA(T)

M0ν

Faessler, 1104.3700 Dueck, W.R., Zuber, PRD 83 Gomez-Cadenas et al., 1109.5515

to better estimate error range: correlations need to be understood

33

Page 34: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Faessler, Fogli et al., PRD 79+87

34

Page 35: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

NMEs are order one numbers :-)

Ge(76) Se(82) Mo(100) Te(128) Te(130)0,0

1,0

2,0

3,0

4,0

5,0

6,0

M0ν

IBMbest-fit: 4.06

IBM

4 +/- 1

Ge(76) Se(82) Te(128) Te(130) Xe(136)0,0

1,0

2,0

3,0

4,0

5,0

6,0

M0ν

NSMbest-fit: 1.92

NSM

sqrt(4) +/- sqrt(1/10)

Ge(76) Se(82) Zr(96) Mo(100) Cd(116) Te(128) Te(130) Xe(136)0,0

1,0

2,0

3,0

4,0

5,0

6,0

M0ν

QRPA Jyvaskylabest-fit: 2.92

QRPA Jyvaskyla

sqrt(9) +/. sqrt(2)

Ge(76) Se(82) Zr(96) Mo(100) Cd(116) Te(128) Te(130) Xe(136)0,0

1,0

2,0

3,0

4,0

5,0

6,0

M0ν

QRPA Tubingenbest fit: 3.08

QPRA Tubingen

sqrt(10) +/- sqrt(3)

35

Page 36: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Experimental Aspect

(T 0ν1/2)

−1 ∝

aM ε t without background

a ε

M t

B∆Ewith background

with

• B is background index in counts/(keV kg yr)

• ∆E is energy resolution

• ǫ is efficiency

• (T 0ν1/2)

−1 ∝ (particle physics)2

Note: factor 2 in particle physics is combined factor of 16 in M × t×B ×∆E

36

Page 37: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Inverted Ordering

Nature provides 2 scales:

|mee|IHmax ≃ c213

∆m2A and |mee|IHmin ≃ c213

∆m2A cos 2θ12

requires O(1026 . . . 1027) yrs

is the lower limit |mee|IHmin fixed?

37

Page 38: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Inverted Hierarchym3 = 0.001 eV

IH, 3σIH, BF

0.01

0.1

0.28 0.3 0.32 0.34 0.36 0.38

0.125

0.25

0.5

1

2

4

8

1

2

4

8

16

32

0.25

0.5

1

2

4

8

16

〈mν〉[

eV]

sin2 θ12

T0ν

1/2

[102

7y]

Current 3σ range of sin2 θ12 gives factor of ∼ 2 uncertainty for |mee|IHmin

⇒ combined factor of ∼ 16 in M × t× B ×∆E

⇒ need precision determination of θ12! ↔ JUNO

Dueck, W.R., Zuber, PRD 83; Ge, W.R., 1507.05514

38

Page 39: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30o 31o 32o 33o 34o 35o 36o 37o 38oP

DF

dP

/dθ

12

θ12

10 1 10 100

min

Me

e [

me

V]

m3 [meV]

Prior

Posterior

39

Page 40: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

10-2

10-1

100

1026 1027 1028 1029 1030

⟨mν⟩

[e

V]

T0ν1/2 [years]

4820Ca

⟨mν⟩ IHmax

⟨mν⟩ IOmin

10-2

10-1

100

1025 1026 1027 1028 1029 1030

⟨mν⟩

[e

V]

T0ν1/2 [years]

7632Ge

GerdaGerda+IGEX+HM

⟨mν⟩ IHmax

⟨mν⟩ IOmin

10-2

10-1

100

1025 1026 1027 1028 1029

⟨mν⟩

[e

V]

T0ν1/2 [years]

8234Se

⟨mν⟩ IHmax

⟨mν⟩ IOmin

10-2

10-1

100

1024 1025 1026 1027 1028 1029

⟨mν⟩

[e

V]

T0ν1/2 [years]

10042Mo

NEMO-3⟨mν⟩ IHmax

⟨mν⟩ IOmin

10-2

10-1

100

1024 1025 1026 1027 1028 1029

⟨mν⟩

[e

V]

T0ν1/2 [years]

13052Te

CUORE-0Cuoricino+CUORE-0

⟨mν⟩ IHmax

⟨mν⟩ IOmin

10-2

10-1

100

1025 1026 1027 1028 1029

⟨mν⟩

[e

V]

T0ν1/2 [years]

13654Xe

EXOKamLAND-Zen

⟨mν⟩ IHmax

⟨mν⟩ IOmin

40

Page 41: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

With 0νββ one can

• test lepton number violation

• test Majorana nature of neutrinos

• probe neutrino mass scale

• extract Majorana phase

• constrain inverted ordering

conceptually, it would increase our believe in

• GUTs

• seesaw mechanism

• leptogenesis

41

Page 42: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Sterile Neutrinos??

• LSND/MiniBooNE/gallium

• cosmology

• BBN

• r-process nucleosynthesis in Supernovae

• reactor anomaly

∆m241[eV

2] |Ue4| |Uµ4| ∆m251[eV

2] |Ue5| |Uµ5|3+2/2+3 0.47 0.128 0.165 0.87 0.138 0.148

1+3+1 0.47 0.129 0.154 0.87 0.142 0.163

or ∆m241 = 1.78 eV2 and |Ue4|2 = 0.151

Kopp, Maltoni, Schwetz, 1103.4570

see lectures by William Louis and Karsten Heeger

42

Page 43: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Sterile Neutrinos and 0νββ

• recall: |mee|actNH can vanish and |mee|actIH ∼ 0.03 eV cannot vanish

• |mee| = | |Ue1|2 m1 + |Ue2|2 m2 e2iα + |U2

e3|m3 e2iβ

︸ ︷︷ ︸

mactee

+ |Ue4|2 m4 e2iΦ1

︸ ︷︷ ︸

mstee

|

• sterile contribution to 0νββ (assuming 1+3):

|mee|st ≃√

∆m2st |Ue4|2

≫ |mee|actNH

≃ |mee|actIH

⇒ |mee|NH cannot vanish and |mee|IH can vanish!

⇒ usual phenomenology gets completely turned around!

Barry, W.R., Zhang, JHEP 1107; Giunti et al., PRD 87; Girardi, Meroni,

Petcov, JHEP 1311; Giunti, Zavanin, 1505.00978

43

Page 44: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Usual plot gets completely turned around!

0.001 0.01 0.1

mlight

(eV)

10-3

10-2

10-1

100

<m

ee>

(eV

)

Normal Inverted

3 ν (best-fit)1+3 ν (best-fit)

0.001 0.01 0.1

3 ν (best-fit)1+3 ν (best-fit)

[10

44

Page 45: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Interpretation of Neutrino-less Double Beta Decay

• Standard Interpretation:

Neutrinoless Double Beta Decay is mediated by light and massive Majorana

neutrinos (the ones which oscillate) and all other mechanisms potentially

leading to 0νββ give negligible or no contribution

• Non-Standard Interpretations:

There is at least one other mechanism leading to Neutrinoless Double Beta

Decay and its contribution is at least of the same order as the light neutrino

exchange mechanism

45

Page 46: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

• Standard Interpretation:

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

• Non-Standard Interpretations:

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

dR

χ/g

dR

χ/g

dc

dc

uL

e−L

e−L

uL

W

W

∆−−

dL

dL

uL

e−L

e−L

uL

2g2vL hee

uL

uL

χ/g

χ/g

dc

dc

e−L

uL

uL

e−L

W

W

dL

dL

uL

e−L

χ0

χ0

e−L

uL

46

Page 47: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Schechter-Valle theorem: observation of 0νββ implies Majorana neutrinos

νe

W

e−

d u u

e−

d

νe

W

is 4 loop diagram: mBBν ∼ G2

F

(16π2)4MeV5 ∼ 10−25 eV

explicit calculation: Duerr, Lindner, Merle, 1105.0901

47

Page 48: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

mechanism physics parameter current limit test

light neutrino exchange∣

∣U2ei

mi

∣ 0.5 eV

oscillations,

cosmology,

neutrino mass

heavy neutrino exchange

S2ei

Mi

2 × 10−8 GeV−1 LFV,

collider

heavy neutrino and RHC

V2ei

Mi M4WR

4 × 10−16 GeV−5 flavor,

collider

Higgs triplet and RHC

(MR)ee

m2∆R

M4WR

10−15 GeV−1

flavor,

collider

e− distribution

λ-mechanism with RHC

Uei SeiM2

WR

1.4 × 10−10 GeV−2

flavor,

collider,

e− distribution

η-mechanism with RHC tan ζ∣

∣Uei Sei

∣ 6 × 10−9

flavor,

collider,

e− distribution

short-range /R

∣λ′2111

Λ5SUSY

ΛSUSY = f(mg, muL, m

dR, mχi

)

7 × 10−18 GeV−5 collider,

flavor

long-range /R

sin 2θb λ′131 λ′

113

1

m2b1

− 1

m2b2

∼GFq

mb

∣λ′131 λ′

113

Λ3SUSY

2 × 10−13 GeV−2

1 × 10−14 GeV−3

flavor,

collider

Majorons |〈gχ〉| or |〈gχ〉|2 10−4 . . . 1spectrum,

cosmology

48

Page 49: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Energy Scale:

Note: standard amplitude for light Majorana neutrino exchange:

Al ≃ G2F

|mee|q2

≃ 7× 10−18

( |mee|0.5 eV

)

GeV−5 ≃ 2.7 TeV−5

if new heavy particles are exchanged:

Ah ≃ c

M5

⇒ for 0νββ holds:

1 eV = 1 TeV

⇒ Phenomenology in colliders, LFV

49

Page 50: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Examples

• Fermions (and no RHC):

A ∝ m

q2 −m2→

m for q2 ≫ m2

1

mfor q2 ≪ m2 µ 1�m²

µ m²

m»q

mass

rate

Note: maximum A corresponds to m ≃ 〈q〉: limits on O(mK) Majorana neutrinos

from K+ → π−µ+e+

• heavy scalar/vector:

A ∝ 1

q2 −m2→ 1

m2

50

Page 51: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Heavyneutrinos

Mitra,Senjanovic,Vissani,1108.0004

51

Page 52: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

T 0ν(1 eV) = T 0ν(1 TeV)

• RPV Supersymmetry

• left-right symmetry

• heavy neutrinos

• color octets

• leptoquarks

• effective operators

• extra dimensions

• . . .

⇒ need to solve the inverse problem. . .

52

Page 53: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Distinguishing Mechanisms

The inverse problem of 0νββ

1.) Other observables (LHC, LFV, KATRIN, cosmology,. . .)

2.) Decay products (individual e− energies, angular correlations, spectrum,. . .)

3.) Nuclear physics (multi-isotope, 0νECEC, 0νβ+β+,. . .)

53

Page 54: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

1.) Example Left-Right Symmetry

very simple extension of SM gauge group to SU(2)L × SU(2)R × U(1)B−L

usual particle content:

LLi =

ν′L

ℓL

i

∼ (2,1,−1) , LRi =

νR

ℓR

i

∼ (1,2,−1)

QLi =

uL

dL

i

∼ (2,1, 1

3) , QRi =

uR

dR

i

∼ (1,2, 13)

for symmetry breaking:

∆L ≡

δ+L/

√2 δ++

L

δ0L −δ+L/√2

∼ (3,1,2) , ∆R ≡

δ+R/

√2 δ++

R

δ0R −δ+R/√2

∼ (1,3,2)

φ ≡

φ01 φ+

2

φ−1 φ0

2

∼ (2,2,0)

54

Page 55: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right Symmetry

• very rich Higgs sector (13 extra scalars)

• rich gauge boson sector (Z ′,MW±R

) with

MZ′ =√

21−tan2 θW

MWR ≃ 1.7MWR>∼ 4.3TeV

• ’sterile’ neutrinos νR

• type I + type II seesaw for neutrino mass

• right-handed currents with strength GF

(gRgL

)2 (mW

MWR

)2

• mν ∝ 1/MWR : maximal parity violation ↔ smallness of neutrino mass

(Note: in case of modified symmetry breaking gL 6= gR and MZ′ < MWR

possible. . .)

55

Page 56: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right Symmetry

6 neutrinos with flavor states n′L and mass states nL = (νL, N

cR)

T

n′L =

ν′L

νRc

=

KL

KR

nL =

U S

T V

νL

N cR

Right-handed currents:

LlepCC =

g√2

[ℓLγ

µKLnL(W−1µ + ξeiαW−

2µ) + ℓRγµKRn

cL(−ξe−iαW−

1µ +W−2µ)

]

(KL and KR are 3× 6 mixing matrices)

plus: gauge boson mixing

L

W±R

=

cos ξ sin ξ eiα

− sin ξ e−iα cos ξ

1

W±2

56

Page 57: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Connection to Neutrinos

Majorana mass matrices ML = fL vL from 〈∆L〉 and MR = fR vR from 〈∆R〉(with fL = fR = f)

Lνmass = − 1

2

(

ν′L ν′Rc)

ML MD

MTD MR

ν′L

c

ν′R

⇒ mν = ML −MD M−1R MT

D

useful special cases

(i) type I dominance: mν = MD M−1R MT

D = MD f−1R /vR MT

D

(ii) type II dominance: mν = fL vL

for case (i): mixing of light neutrinos with heavy neutrinos of order

|Sαi| ≃ |T Tαi| ≃

√mν

Mi

<∼ 10−7

(TeV

Mi

)1/2

small (or enhanced up to 10−2 by cancellations)

57

Page 58: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Right-handed Currents in Double Beta Decay(A,Z) → (A,Z + 2) + 2e−

LlepCC =

g√2

3∑

i=1

[eLγ

µ(UeiνLi + SeiNcRi)(W

−1µ + ξeiαW−

2µ)

+ eRγµ(T ∗

eiνcLi + V ∗

eiNRi)(−ξe−iαW−1µ +W−

2µ)]

LℓY =− L

′c

Liσ2∆LfLL′L − L

′c

Riσ2∆RfRL′R

classify diagrams:

• mass dependent diagrams (same helicity of electrons)

• triplet exchange diagrams (same helicity of electrons)

• momentum dependent diagrams (different helicity of electrons)

58

Page 59: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Mass Dependent Diagrams

electrons either both left- or right-handed, leading diagrams:

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

Aν ≃ G2Fmeeq2 AR

NR≃ G2

F

(mWL

mWR

)4 ∑

iV ∗ei

2

Mi

59

Page 60: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Triplet Exchange Diagrams

leading diagrams:

WL

WL

δ−−L

dL

dL

uL

e−L

e−L

uL

2g2vL hee

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee

AδL ≃ G2F

heevL

m2δL

AδR ≃ G2F

(mWL

mWR

)4∑

iV 2eiMi

m2δR

(negligible)

60

Page 61: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Momentum Dependent Diagrams

electrons with opposite helicity

ALR ≃ G2F

(m2

WL

m2WR

+ tan ξ

)∑

i

(

UeiT∗ei

1

q− SeiV

∗ei

q

M2i

)

leading diagrams (long range):

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

Aλ ≃ G2F

(mWL

mWR

)2 ∑

i UeiT∗ei

1q Aη ≃ G2

F tan ξ∑

i UeiT∗ei

1q

61

Page 62: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right symmetry

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

WR WR

uR

dR

e−R e−

R

dR

uR

NRi

Senjanovic, Keung, 1983; Tello et al.; Nemevsek et al.

62

Page 63: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

WR WR

uR

dR

e−R e−

R

dR

uR

NRi

Bhupal Dev, Goswami, Mitra, W.R.

63

Page 64: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Type II dominance (Tello et al., 1011.3522)

mν = mL −mD M−1R mT

D = vL f − v2

vRYD f−1 Y T

D∗−→ vL f

⇒ mν fixes MR and exchange of NR with WR fixed in terms of PMNS:

⇒ ANR ≃ G2F

(mW

MWR

)4 ∑ V 2ei

Mi∝

∑ U2ei

mi

64

Page 65: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Constraints from Lepton Flavor Violation

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee δ−−R

µ−R

e+R

e−R

e−R

heµ

hee

65

Page 66: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Constraints from Lepton Flavor Violation

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee δ−−R

µ−R

e+R

e−R

e−R

heµ

hee

0.0001 0.001 0.01 0.1

mlight (eV)

1026

1028

1030

1032

[T1

/2] ν

(yrs

)

GERDA 40kg

GERDA 1T

Normal

0.0001 0.001 0.01 0.1

Excluded by KamLAND-Zen

InvertedmδR

= 3.5 TeV

mδR = 2 TeV

mδR = 1 TeV

0.0001 0.001 0.01 0.1

mlight (eV)

1026

1028

1030

[T1

/2] N

R (

yrs

)

GERDA 40kg

GERDA 1T

Normal

0.0001 0.001 0.01 0.1

Excluded by KamLAND-Zen

InvertedmδR = 3.5 TeV

mδR = 2 TeV

mδR = 1 TeV

Barry, W.R., JHEP 1309

66

Page 67: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Adding diagrams

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

⇒ lower bound on m(lightest) >∼ meV

Bhupal Dev, Goswami, Mitra, W.R., Phys. Rev. D88

67

Page 68: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right symmetry

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

W

W

dL

dL

uL

e−L

e−L

uL

NRi

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

WL

WL

δ−−L

dL

dL

uL

e−L

e−L

uL

2g2vL hee

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

68

Page 69: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right symmetry

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

W

W

dL

dL

uL

e−L

e−L

uL

NRi

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

U2ei mi

S2ei

Mi

V 2ei

M4WR

Mi

WL

WL

δ−−L

dL

dL

uL

e−L

e−L

uL

2g2vL hee

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

U2eimi

M2∆L

V 2ei Mi

M4WR

M2∆R

Uei Tei tan ζUei Tei

M2WR

69

Page 70: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Left-right symmetry

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

W

W

dL

dL

uL

e−L

e−L

uL

NRi

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

0.4 eV 2× 10−8 GeV−1 4× 10−16 GeV−5

WL

WL

δ−−L

dL

dL

uL

e−L

e−L

uL

2g2vL hee

WR

WR

δ−−R

dR

dR

uR

e−R

e−R

uR

2g2vR hee

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

— 10−15 GeV−5 6× 10−9 1.4× 10−10 GeV−2

70

Page 71: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

2.) Distinguishing via decay products

Consider standard plus λ-mechanism

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

dΓdE1 dE2 d cos θ ∝ (1− β1 β2 cos θ) dΓ

dE1 dE2 d cos θ ∝ (E1 − E2)2 (1 + β1 β2 cos θ)

Arnold et al., 1005.1241

71

Page 72: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

2.) Distinguishing via decay products

Defining asymmetries

Aθ = (N+ −N−)/(N+ +N−) and AE = (N> −N<)/(N> +N<)

-4 -2 0 2 40

50

100

150

200

250

300

Λ @10-7D

XmΝ\@m

eVD

-4 -2 0 2 40

50

100

150

200

250

300

Λ @10-7D

XmΝ\@m

eVD

72

Page 73: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

3.) Distinguishing via nuclear physics

Gehman, Elliott, hep-ph/0701099

3 to 4 isotopes necessary to disentangle mechanism

73

Page 74: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Direct versus indirect contribution

Example: introduce Ψi = (8, 1, 0) and Φ = (8, 2, 12 )

να νβΨi Ψi

Φ Φ

H0 H0

Φ

Φ

Ψi

Ψi

d

d

u

e−

e−

u

1-loop mν

indirect contribution to 0νββ: direct contribution to 0νββ:

Al ≃ G2F

|mee|q2

A ≃ c2udy2eα

MΨiM4

Φ

Choubey, Dürr, Mitra, W.R., JHEP 1205

74

Page 75: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Direct versus indirect contribution

new contribution can dominate over standard one:

75

Page 76: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Do Dirac neutrinos imply that there is no Lepton Number Violation?

possible to construct U(1)B−L model with χ ∼ −2 and φ ∼ 4

L =(

yαβLαHνR,β + καβχ νR,ανcR,β + h.c.

)

+∑

X=H,φ,χ

(µ2X |X |2 + λX |X |4

)

+λHφ|H|2|φ|2 + λHχ|H|2|χ|2 + λχφ|χ|2|φ|2 −(µφχ2 + h.c.

)

break it by allowing only scalar φ to obtain VEV:

⇒ neutrinos are Dirac particles, and Lepton Number violated by 4 units!

⇒ neutrinoless double beta decay forbidden. . .

Heeck, W.R., EPL 103

76

Page 77: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Do Dirac neutrinos mean there is no Lepton Number Violation?

Model based on gauged B − L, broken by 4 units

⇒ Neutrinos are Dirac particles, ∆L = 2 forbidden, but ∆L = 4 allowed. . .

⇒ observable: neutrinoless quadruple beta decay (A,Z) → (A,Z + 4) + 4 e−

Z

Mass

0ν4β−

2β+

2β−

Z + 2Z − 2

Q

Heeck, W.R., EPL 103

77

Page 78: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Candidates for neutrinoless quadruple beta decay

0ν2β

2ν2β

0ν4β

Energy

Decay

rate

Q0ν4β Q0ν2β

Q0ν4β Other decays NA

9640Zr → 96

44Ru 0.629 τ2ν2β1/2 ≃ 2× 1019 2.8

13654 Xe → 136

58 Ce 0.044 τ2ν2β1/2 ≃ 2× 1021 8.9

15060 Nd → 150

64 Gd 2.079 τ2ν2β1/2 ≃ 7× 1018 5.6

Heeck, W.R., EPL 103

78

Page 79: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Summary

79

Page 80: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Mass terms

L = mν νL νR + h.c. = mν (νL νR + νR νL)

both chiralities a must for mass term!

Possibilities for LR:

(i) νR independent of νL: Dirac particle

(ii) νR = (νL)c: Majorana particle

⇒ νc = (νL + νR)c = (νL)

c + (νR)c = νR + νL = ν : νc = ν

⇒ Majorana fermion is identical to its antiparticle, a truly neutral particle

⇒ all additive quantum numbers (Q, L, B,. . .) are zero

80

Page 81: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

KATRIN and right-handed currents

dL

uL

e−L

νLi

W−L

UeidR

uR

e−L

ν′L

W−R

W−L

dL

uL

e−R

ν′R

W−L

W−R

dR

uR

e−R

ν′R

W−R

• left-handed contribution

• right-handed contribution

• interference contribution

Neutrino masses up to m = 18.6 keV testable ⇔ Warm Dark Matter!

(see lecture by Kevork Abazajian)

81

Page 82: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

⇒ mixing down to 10−7 in reach!?

Mertens et al., 1409.0920

82

Page 83: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

dL

uL

e−L

νLi

W−L

Uei

dR

uR

e−L

ν′L

W−R

W−L

dL

uL

e−R

ν′R

W−L

W−R

dR

uR

e−R

ν′R

W−R

(

dE

)

LL

= K′(E +me)peX[1 + 2C tan ξ]

×[

|Uei|2√

X2 −m2iΘ(X −mi) + |Sei|

2√

X2 −M2iΘ(X −Mi)

]

(

dE

)

RR

≃ K′(E +me)peX

[

m4WL

m4WR

+ tan2ξ + 2C

m2WL

m2WR

tan ξ

]

×|Vei|2√

X2 −M2iΘ(X −Mi)

(

dE

)

LR

= −2K′

mepeRe

{[

(

mWL

mWR

)2

+ C tan ξ

]

×[

UeiTeimi

X2 −m2iΘ(X −mi) + SeiVeiMi

X2 −M2iΘ(X −Mi)

]}

with X = E0 − E

83

Page 84: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Focus for simplicity on

dL

uL

e−L

νLi

W−L

UeidR

uR

e−R

ν′R

W−R

total contribution of keV neutrino with mass M to beta decay:

θ2eff ≃ |Sej |2 + 1.1× 10−6 |Vej |2(2.5TeV

mWR

)4

and note that M does 0νββ with amplitude ∝ |Vej |2 (mW /mWR)4 M

⇒ connection to 0νββ constraints!

84

Page 85: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

connection to 0νββ constraints:

θ2eff = |Sej |2 +me

Mj

[

|M0νν |−2

(G0ν

01

)−1(

T 0ν1/2

)−1

− |S2ejMj/me|2

] 12

Barry, Heeck, W.R., JHEP 1407

85

Page 86: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

How the additional interactions save the day

• double beta decay without RHC: θ2M = 7× 10−10 keV = 70µeV

• double beta decay with RHC: (mWL/mWR)4 |Vei|2M = 8meV

• decay:ΓRHC(Nj → νγ)

ΓSM(Nj → νγ)≃

m4WL

|Sei|2m4

WR|Tei|2

≃m4

WL

m4WR

• beta decay: θ2eff ≃ |Sej |2 + 1.1× 10−6 |Vej |2(

2.5TeVmWR

)4

> |Sej |2

86

Page 87: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Diracparticles:ν6=νc

helicitystates±:4d.o.f.

87

Page 88: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Majoranaparticles:ν=νc

helicitystates±:2d.o.f.

88

Page 89: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Mass term for Majorana particles:

LM =1

2ν mν ν =

1

2νL + (νL)c mν (νL + (νL)

c) = 12 νL mν ν

cL + h.c.

• Majorana mass term

• LM ∝ ν† ν∗ ⇒ NOT invariant under ν → eiα ν

⇒ breaks Lepton Number by 2 units

89

Page 90: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Dirac vs. Majorana

in V −A theories: observable difference always suppressed by (m/E)2

• suppose beam from π+ decays: π+ → µ+ νµ (left-handed)

• can we observe νµ + p → n+ µ+ ? (right-handed)

• chirality is not a good quantum number: “spin flip”

• emitted νµ (negative helicity) is not purely left-handed:

u↓(p) = u(m=0)L (p) +

m

2Eu(m=0)R (−p)

• PR u↓ 6= 0 and µ+ can be produced if m 6= 0 and “u ∝ v” (↔ Majorana!)

⇒ amplitude ∝ (m/E) ⇒ probability ∝ (m/E)2

⇒ only NA can save the day!

90

Page 91: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

plus uncertainty due to model details:

• Short range correlations:

– Jastrow function

– Unitary Correlation Operator method

– Coupled Cluster method

• model parameters

– correlated: e.g., gA, gpp, SRC

– uncorrelated: e.g., model space of single particle states

– some include errors, some don’t. . .

91

Page 92: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

M0ν =( gA1.25

)2(

M0νGT − g2V

g2AM0ν

F

)

with

M0νGT = 〈f |∑

lk

σl σk τ−l τ−k HGT(rlk, Ea)|i〉

M0νF = 〈f |∑

lk

τ−l τ−k HF(rlk, Ea)|i〉

• rlk ≃ 1/p ≃ 1/(0.1 GeV) distance between the two decaying neutrons

• Ea average energy

• sum over all multipolarities!

• ’neutrino potential’ HGT,F(rlk, Ea) integrates over the virtual neutrino

momenta

• (if heavy particles exchanged: nucleon structure: gA = gA(0)/(1− q2/M2A)

2)

92

Page 93: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

The 2νββ matrix elements can be written as

M2νGT =

n

〈f |∑

aσa τ−

a |n〉〈n|∑

b

σb τ−b |i〉

En−(Mi−Mf )/2

M2νF =

n

〈f |∑

aτ−a |n〉〈n|

b

τ−b |i〉

En−(Mi−Mf )/2

• no direct connection to 0νββ. . .

• sum over 1+ states (low momentum transfer)

• adjust some parameters to reproduce 2νββ-rates

• 2νββ observed in 48Ca, 76Ge, 82Se, 96Zr, 100Mo (plus exc. state), 116Cd,128Te, 130Te, 136Xe 150Nd (plus exc. state) with half-lives from 1018 to 1024

yrs

• can partly be tested with forward angle (= low momentum transfer) (p, n)

charge exchange reactions

93

Page 94: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Mixed Diagrams can dominate

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

W

νi

νi

W

dL

dL

uL

e−L

e−L

uL

Uei

q

Uei

Aλ ∼(

mW

MWR

)2U T

qANR ∼

(mW

MWR

)4V 2

MRAν ∼ U2mi

q2

with T ≃√

MR∼ 10−7 (or huge enhancements up to 10−2)

⇒ Aλ

ANR

≃ MR

q

(MWR

mW

)2

T ≃ 105 T

Barry, W.R., JHEP 1309

94

Page 95: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Mixed Diagrams can dominate

WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

WR

WR

dR

dR

uR

e−R

e−R

uR

NRi

0.001 0.01

mlight (eV)

1e-06

0.001

1

1000

[T1

/2] k

/ [

T1

/2] ν

0.001 0.01

NR(L)/ν

λ/ν

Normal Inverted

Barry, W.R., 1303.6324

95

Page 96: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Susanne Mertens

Imprint of keV neutrinos on ß-spectrum

12

���

����

����

����

� ����

����

heavy

light

s

e

cossin

sincos

light

+ )(sin2

heavy

)(cos2

Mertens et al., 1409.0920

96

Page 97: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Susanne Mertens

Imprint of keV neutrinos on ß-spectrum

13

heavym�

)(sin2�

keV neutrino

Mertens et al., 1409.0920

97

Page 98: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Susanne Mertens

Imprint of keV neutrinos on ß-spectrum

15

Mertens et al., 1409.0920

98

Page 99: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Interaction strength Sin2(2

θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-

α Excluded by X-ray observations

Interaction strength Sin2(2

θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-

α Excluded by X-ray observations

Interaction strength Sin2(2

θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-

α Excluded by X-ray observations

Interaction strength Sin2(2

θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-

α Excluded by X-ray observations

Interaction strength Sin2(2

θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-

α Excluded by X-ray observations

⇒ mixing down to 10−7 in reach!?

hard for KATRIN to see something. . .

. . .can increase signal with additional interactions, e.g. right-handed currents

99

Page 100: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

in total one has

dE=

(dΓ

dE

)

LL

+

(dΓ

dE

)

RR

+

(dΓ

dE

)

LR

Full

Total RHN

ÈS 2

RR

LR

8 10 12 14 16 1810-2

10-1

1

101

102

103

104

105

106

107

108

E @keVD

HdG�d

EL�HK

’HE+

meLp

eL@e

V2D

ÈSeiÈ = 10-4, mWR= 3.5 TeV, Ξ = -5´10-4

100

Page 101: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Observation of LNV at LHC implies washout effects in early Universe!

Example TeV-scale WR: leading to washout e±R e±R → W±RW±

R and

e±R W∓R → e∓R W±

R . Further, e±RW∓R → e∓R W±

R stays long in equilibrium

(Frere, Hambye, Vertongen; Bhupal Dev, Lee, Mohapatra; U. Sarkar et al.)

More model-independent (Deppisch, Harz, Hirsch):

washout: log10ΓW (qq → ℓ+ℓ+ qq)

H>∼ 6.9 + 0.6

(MX

TeV− 1

)

+ log10σLHC

fb

(TeV-0νββ, LFV and YB: Deppisch, Harz, Huang, Hirsch, Päs)

↔ post-Sphaleron mechanisms, τ flavor effects,. . .

101

Page 102: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Flavor Symmetry Models: sum-rules

10-3

10-2

10-1

<m

ee>

(eV

)0.01 0.1

mβ (eV)

10-3

10-2

10-1

0.01 0.1

3σ 30% error3σ exactTBM exact

2m2 +

m3 =

m1

m1 +

m2 =

m3

InvertedNormal

constraints on masses and Majorana phases

Barry, W.R., Nucl. Phys. B842

102

Page 103: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Predictions of SO(10) theories

Yukawa structure of SO(10) models depends on Higgs representations

10H (↔ H), 126H (↔ F ), 120H (↔ G)

Gives relation for mass matrices:

mup ∝ r(H + sF + itu G)

mdown ∝ H + F + iG

mD ∝ r(H − 3sF + itD G)

mℓ ∝ H − 3F + itl G

MR ∝ r−1R F

Numerical fit including RG, Higgs, θ13

10H + 126H : 19 free parameters

10H + 126H + 120H : 18 free parameters

20 (19) observables to be fitted

103

Page 104: Neutrinoless Double Beta Decay: Theory · Werner Rodejohann SSI 2015 17/08/15 MANITOP Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology m v = m L - m D M

Predictions of SO(10) theories

|mee| m0 M3 χ2

Model Fit [meV] [meV] [GeV]

10H + 126H NH 0.49 2.40 3.6× 1012 23.0

10H + 126H + SS NH 0.44 6.83 1.1× 1012 3.29

10H + 126H + 120H NH 2.87 1.54 9.9× 1014 11.2

10H + 126H + 120H + SS NH 0.78 3.17 4.2× 1013 6.9× 10−6

10H + 126H + 120H IH 35.52 30.2 1.1× 1013 13.3

10H + 126H + 120H + SS IH 24.22 12.0 1.2× 1013 0.6

Dueck, W.R., JHEP 1309

104