Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical...

58
Neural Encoding Models Maneesh Sahani [email protected] Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011

Transcript of Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical...

Page 1: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Neural Encoding Models

Maneesh [email protected]

Gatsby Computational Neuroscience UnitUniversity College London

Term 1, Autumn 2011

Page 2: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Studying sensory systems

x(t) y(t)

Decoding: x(t)= G[y(t)] (reconstruction)Encoding: y(t)= F [x(t)] (systems identification)

Page 3: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

General approach

Goal: Estimate p(spike|x,H) [or λ(t|x[0, t), H(t))] from data.

• Naive approach: measure p(spike, H|x) directly for every setting of x.

– too hard: too little data and too many potential inputs.

• Estimate some functional f (p) instead (e.g. mutual information)

• Select stimuli efficiently

• Fit models with smaller numbers of parameters

Page 4: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Spikes, or rate?

Most neurons communicate using action potentials — statistically de-scribed by a point process:

P(spike ∈ [t, t + dt)

)= λ(t|H(t), stimulus, network activity)dt

To fully model the response we need to identify λ. In general this de-pends on spike history H(t) and network activity. Three options:

• Ignore the history dependence, take network activity as source of“noise” (i.e. assume firing is inhomogeneous Poisson or Cox process,conditioned on the stimulus).

• Average multiple trials to estimate

λ(t, stimulus) = limN→∞

1

N

∑n

λ(t|Hn(t), stimulus, networkn)

the mean intensity (or PSTH), and try to fit this.

• Attempt to capture history and network effects in simple models.

Page 5: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Spike-triggered average

Decoding: mean of P (x | y = 1)

Encoding: predictive filter

Page 6: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Linear regression

y(t) =

∫ T

0

x(t− τ )w(τ )dτ

W (ω) =X(ω)∗Y (ω)

|X(ω)|2

x1 x2 x3 . . . xT xT+1 . . .x1 x2 x3 . . . xT︸ ︷︷ ︸x1 x2 x3 . . . xT xT︸ ︷︷ ︸

x1 x2 x3 . . . xT+1

x2 x3 x4 . . . xT+1

...×

wt...w3

w2

w1

=

yTyT+1

...

XW = Y

W = (XTX)︸ ︷︷ ︸ΣSS

−1 (XTY )︸ ︷︷ ︸STA

Page 7: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Linear models

So the (whitened) spike-triggered average gives the minimum-squared-error linear model.

Issues:

• overfitting and regularisation

– standard methods for regression

• negative predicted rates

– can model deviations from background

• real neurons aren’t linear

– models are still used extensively– interpretable suggestions of underlying sensitivity– may provide unbiased estimates of cascade filters (see later)

Page 8: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

How good are linear predictions?

We would like an absolute measure of model performance.

Measured responses can never be predicted perfectly:

• The measurements themselves are noisy.

Models may fail to predict because:

• They are the wrong model.

• Their parameters are mis-estimated due to noise.

Page 9: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Estimating predictable power

Psignal

Pnoise

response︸ ︷︷ ︸r(n)

= signal + noise

P(r(n)) = Psignal + Pnoise

P(r(n)) = Psignal +1

NPnoise

⇒Psignal =

1

N − 1

(NP(r(n))− P(r(n))

)Pnoise = P(r(n))− Psignal

Page 10: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Signal power in A1 responses

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

Noise power (spikes2/bin)

Sig

nal p

ower

(sp

ikes

2 /bin

)

0 50 100 150Number of recordings

Page 11: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Testing a model

For a perfect prediction⟨P(trial)− P(residual)

⟩= P(signal)

Thus, we can judge the performance of a model by the normalized pre-dictive power

P(trial)− P(residual)

P(signal)

Similar to coefficient of determination (r2), but the denominator is thepredictable variance.

Page 12: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Predictive performance

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

norm

alis

ed B

ayes

pre

dict

ive

pow

er

Training Error

−2 −1 0 1−2

−1.5

−1

−0.5

0

0.5

1Cross−Validation Error

normalised STA predictive power

Page 13: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Extrapolating the model performance

Page 14: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Jackknifed estimates

0 50 100 150−0.5

0

0.5

1

1.5

2

2.5

3

Nor

mal

ized

line

arly

pre

dict

ive

pow

er

Normalized noise power

Page 15: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Extrapolated linearity

0 50 100 150−0.5

0

0.5

1

1.5

2

2.5

−5 0 5 10 15 20 25 30

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized noise power

Nor

mal

ized

line

arly

pre

dict

ive

pow

er

[extrapolated range: (0.19,0.39); mean Jackknife estimate: 0.29]

Page 16: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Simulated (almost) linear data

0 50 100 1500

0.5

1

1.5

2

2.5

3

−5 0 5 10 15 20 25 300.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Normalized noise power

Nor

mal

ized

line

arly

pre

dict

ive

pow

er

[extrapolated range: (0.95,0.97); mean Jackknife estimate: 0.97]

Page 17: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Linear fits to non-linear functions

Page 18: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Linear fits to non-linear functions

(Stimulus dependence does not always signal response adaptation)

Page 19: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Approximations are stimulus dependent

(Stimulus dependence does not always signal response adaptation)

Page 20: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Consequences

Local fitting can have counterintuitive consequences on the interpreta-tion of a “receptive field”.

Page 21: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

“Independently distributed” stimuli

Knowing stimulus power at any set of points in analysis space providesnoinformation about stimulus power at any other point.

DRC:

Space

Spectrotemporal

Ripple:

Independence is a property of stimulus and analysis space.

Christianson, Sahani, and Linden (2008)

Page 22: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Nonlinearity & non-independence distort RF estimates

Stimulus may have higher-order correlations in other analysis spaces— interaction with nonlinearities can produce misleading “receptive fields.”

Christianson, Sahani, and Linden (2008)

Page 23: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

What about natural sounds?

Multiplicative RF

Time (ms)

Fre

q. (

kHz)

−30 −25 −20 −15 −10 −5

1

2

3

4

5

6

7Multiplicative RF

Fre

q. (

kHz)

Time (ms)−30 −25 −20 −15 −10 −5

1

2

3

4

5

6

7

Finch Song

Fre

q. (

kHz)

Time (ms)−30 −25 −20 −15 −10 −5

1

2

3

4

5

6

7Finch Song

Fre

q. (

kHz)

Time (ms)−30 −25 −20 −15 −10 −5

1

2

3

4

5

6

7

Usually not independent in any space — so STRFs may not be conser-vative estimates of receptive fields.

Christianson, Sahani, and Linden (2008)

Page 24: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Beyond linearity

Page 25: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Beyond linearity

Linear models often fail to predict well. Alternatives?

•Wiener/Volterra functional expansions

– M-series– Linearised estimation– Kernel formulations

• LN (Wiener) cascades

– Spike-trigger covariance (STC) methods– “Maximimally informative” dimensions (MID) ⇔ ML nonparametric

LNP models– ML Parametric GLM models

• NL (Hammerstein) cascades

– Multilinear formulations

Page 26: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Non-linear models

The LNP (Wiener) cascade

k n

Rectification addresses negative firing rates. Possible biophysical justi-fication.

Page 27: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

LNP estimation – the Spike-triggered ensemble

Page 28: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Single linear filter

STA.

Non-linearity.

STA unbiased for spherical (elliptical) data.

Bussgang.

Non-spherical inputs.

Biases.

Page 29: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Multiple filters

Distribution changes along relevant directions (and, usually, along alllinear combinations of relevant directions).

Proxies for distribution:

•mean: STA (can only reveal a single direction)

• variance: STC

• binned (or kernel) KL: MID “maximally informative directions” (equiv-alent to ML in LNP model with binned nonlinearity)

Page 30: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

STC

Project out STA:

X = X − (Xksta)kTsta; Cprior =XTX

N;Cspike =

XTdiag(Y )X

Nspike

Choose directions with greatest change in variance:k- argmax‖v‖=1

vT(Cprior − Cspike)v

⇒ find eigenvectors of (Cprior − Cspike) with large (absolute) eigvals.

Page 31: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

STC

Reconstruct nonlinearity (may assume separability)

Page 32: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Biases

STC (obviously) requires that the nonlinearity alter variance.

If so, subspace is unbiased if distribution

• radially (elliptically) symmetric

• AND independent

⇒ Gaussian.

May be possible to correct by transformation, subsampling or weighting(latter two at cost of variance).

Page 33: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

More LNP methods

• Non-parametric non-linearities: “Maximally informative dimensions”(MID)⇔ “non-parametric” maximum likelihood.

– Intuitively, extends the variance difference idea to arbitrary differ-ences between marginal and spike-conditioned stimulus distribu-tions.

kMID = argmaxk

KL[P (k · x)‖P (k · x|spike)]

– Measuring KL requires binning or smoothing—turns out to be equiv-alent to fitting a non-parametric nonlinearity by binning or smooth-ing.

– Difficult to use for high-dimensional LNP models.

• Parametric non-linearities: the “generalised linear model” (GLM).

Page 34: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Generalised linear models

LN models with specified nonlinearities and exponential family noise.

In general (for monotonic g):

y ∼ ExpFamily[µ(x)]; g(µ) = βx

For our purposes easier to write

y ∼ ExpFamily[f (βx)]

(Continuous time) point process likelihood with GLM-like dependence ofλ on covariates is approached in limit of bins→ 0 by either Poisson orBernoulli GLM.

Mark Berman and T. Rolf Turner (1992) Approximating Point Process Likelihoods with GLIM

Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1):31-38.

Page 35: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Generalised linear models

Poisson distribution⇒ f = exp() is canonical (natural params = βx).

Canonical link functions give concave likelihoods⇒ unique maxima.

Generalises (for Poisson) to any f which is convex and log-concave:

log-likelihood = c− f (βx) + y log f (βx)

Includes:

• threshold-linear

• threshold-polynomial

• “soft-threshold” f (z) = α−1 log(1 + eαz).

Page 36: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Generalised linear models

ML parameters found by

• gradient ascent

• IRLS

Regularisation by L2 (quadratic) or L1 (absolute value – sparse) penal-ties (MAP with Gaussian/Laplacian priors) preserves concavity.

Page 37: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Linear-Nonlinear-Poisson (GLM)

stimulus filter pointnonlinearity

Poissonspiking

stimulus

k(t)

Page 38: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

GLM with history-dependence

• rate is a product of stim- and spike-history dependent terms

• output no longer a Poisson process

• also known as “soft-threshold” Integrate-and-Fire model

exponentialnonlinearity

+post-spike filter

h

(t)

stimulus filter

(Truccolo et al 04)

k

Poissonspiking

conditional intensity(spike rate)

stimulus

Page 39: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

filter output

traditional IF

filter output

“hard threshold”

“soft-threshold” IF

spik

e ra

te

GLM with history-dependence

exponentialnonlinearity

+post-spike filter

h

(t)

stimulus filter

k

Poissonspiking

• “soft-threshold” approximation to Integrate-and-Fire model

stimulus

Page 40: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

GLM dynamic behaviors

time after spike time (ms)

0 50 100 0 100 200 300 400 500

stimulus x(t)

post-spike waveform

0 0

stim-induced

spike-history

induced

regular spiking

Page 41: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

GLM dynamic behaviors

stimulus x(t)

post-spike waveform

0 0

stim-filter output

spike-history

filter output

regular spiking

0 10 20

0

0 100 200 300 400 500

0

time after spike time (ms)

irregular spiking

Page 42: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

GLM dynamic behaviors

stimulus x(t)

00

burstingpost-spike waveform

time after spike time (ms)

0 20 40

0

0 100 200 300 400 500-10

0

adaptation

Page 43: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Generalized Linear Model (GLM)

post-spike filter

exponentialnonlinearity

probabilisticspiking

stimulus

stimulus filter

+

Page 44: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

multi-neuron GLM

exponentialnonlinearity

probabilisticspiking

stimulus

neuron 1

neuron 2

post-spike filter

stimulus filter

+

+

Page 45: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

multi-neuron GLM

exponentialnonlinearity

probabilisticspiking

couplingfilters

stimulus

neuron 1

neuron 2

post-spike filter

stimulus filter

+

+

Page 46: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

conditional intensity(spike rate)

...

time t

GLM equivalent diagram:

Page 47: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Multilinear models

Input nonlinearities (Hammerstein cascades) can be identified in a mul-tilinear (cartesian tensor) framework.

Page 48: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Input nonlinearities

The basic linear model (for sounds):

r(i)︸︷︷︸predicted rate

=∑jk

wtfjk︸︷︷︸

STRF weights

s(i− j, k)︸ ︷︷ ︸stimulus power

,

How to measure s? (pressure, intensity, dB, thresholded, . . . )

We can learn an optimal representation g(.):

r(i) =∑jk

wtfjkg(s(i− j, k)).

Define: basis functions {gl} such that g(s) =∑lw

llgl(s)

and stimulus array Mijkl = gl(s(i− j, k)). Now the model is

r(i) =∑j

wtfjkw

llMijkl or r = (wtf ⊗ wl) •M.

Page 49: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Multilinear models

Multilinear forms are straightforward to optimise by alternating least squares.

Cost function:E =

∥∥∥r− (wtf ⊗ wl) •M∥∥∥2

Minimise iteratively, defining matrices

B = wl •M and A = wtf •M

and updating

wtf = (BTB)−1BTr and wl = (ATA)−1ATr.

Each linear regression step can be regularised by evidence optimisa-tion (suboptimal), with uncertainty propagated approximately using vari-ational methods.

Page 50: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Some input non-linearities

25 40 55 70

0

l (dB−SPL)

wl

Page 51: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Parameter grouping

Separable STRF: (time) ⊗ (frequency). The input nonlinearity model isseparable in another sense: (time, frequency) ⊗ (sound level).

intensitytime

freq

uenc

y

time

freq

uenc

y

intensityw

eigh

t

Other separations:

• (time, sound level) ⊗ (frequency): r = (wtl ⊗ wf) • M,

• (frequency, sound level) ⊗ (time): r = (wfl ⊗ wt) • M,

• (time) ⊗ (frequency) ⊗ (sound level): r = (wl ⊗ wf ⊗ wl) • M.

Page 52: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

(time, frequency) ⊗ (sound level)

t (ms)

f (kH

z)

180 120 60 0

32

16

8

4

2

0

25 40 55 70

0

l (dB−SPL)w

l

Page 53: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

(time, sound level) ⊗ (frequency)

t (ms)

l (dB

−S

PL)

180 120 60 0

70

55

40

25

0

25 50 100

0

f (kHz)

wf

Page 54: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

(frequency, sound level) ⊗ (time)

f (kHz)

l (dB

−S

PL)

2 4 8 16 32

70

55

40

25

0

180 120 60 0

0

t (ms)

wt

Page 55: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Contextual influences

stimulus

wτφ

wtfPSTH

time

frequency

rate(i) = c +∑jkl

wtjw

fkw

ll gl(soundi−j,k)(

c2 +∑mnp

wτmwφn w

λp gp(soundi−j−m,k+n)

)

Page 56: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Contextual influences

Introduce extra dimensions:

• τ : time difference between contextual and primary tone,

•φ: frequency difference between contextual and primary tone,

•λ: sound level of the contextual tone.

Model the effective sound level of a primary tone by

Level(i, j)→ Level(i, j) · (const + Context(i, j)) .

and the context by

Context(i, j) =∑m,n,p

wτmwφn w

λp hp(s(i−m, j + n))

This leads to a multilinear model

r = (wt ⊗ wf ⊗ wl ⊗ wτ ⊗ wφ ⊗ wλ) •M.

Page 57: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Inseparable contexts

We can also allow inseparable contexts (and principal fields), droppingthe level-nonlinearity to reduce parameters.

r(i) = c +∑jk

wtfjk soundi−j,k

(1 +

∑mn

wτφmn soundi−j−m,k+n)

stimulus

wτφ

wtfPSTH

time

frequency

Page 58: Neural Encoding Models · 2011. 11. 25. · STA. Non-linearity. STA unbiased for spherical (elliptical) data. Bussgang. Non-spherical inputs. Biases. Multiple filters Distribution

Performance

0.1

0.5

0.9

Ext

rapo

late

d no

rmal

ised

pred

ictiv

e po

wer

STRF

Separable Context

Inseparable Context

test set

training set