NANO266 - Lecture 10 - Temperature

22
Modeling Temperature Shyue Ping Ong

Transcript of NANO266 - Lecture 10 - Temperature

Page 1: NANO266 - Lecture 10 - Temperature

Modeling Temperature

Shyue Ping Ong

Page 2: NANO266 - Lecture 10 - Temperature

What is temperature?

Temperature is a measure of “excess” energy above the ground state due to excitations.

NANO266 2

Vibrational

Configurational

Electronic

Conformational

Page 3: NANO266 - Lecture 10 - Temperature

Approximating temperature effects

NANO266 3

ϕ = E +PV −TS −µO2NO2

Negligible for solids

Small compared to O2 entropy

Ong, S. P.; Wang, L.; Kang, B.; Ceder, G. Li−Fe−P−O 2 Phase Diagram from First Principles Calculations, Chem. Mater., 2008, 20, 1798–1807, doi:10.1021/cm702327g.

Temperature changes oxygen chemical potential

Page 4: NANO266 - Lecture 10 - Temperature

Vibrational entropy - Phonons

Collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, like solids and some liquids.

NANO266 4

Page 5: NANO266 - Lecture 10 - Temperature

Lattice dynamics of monoatomic 1D lattice

NANO266 5

(n-2)a (n-1)a na (n+1)a (n+2)a

un un+1 un+2 un-1 un-2

E0 ({un}) = E0 (0)+∂E∂un

"

#$

%

&'0

unn∑ +

12

∂2E∂un∂un)

"

#$$

%

&''0

unun)n, )n∑ +

13!

∂3E∂un∂un)∂un))

"

#$$

%

&''0

ununun))n, )n , ))n∑ +…

At equilibrium

E0 ({un}) ≈ E0 (0)+ 12

Dn, "n unun"n, "n∑ where Dn, "n =

∂2E∂un∂un"

%

&''

(

)**

0

Harmonic approximation M!!un = − Dn, "n un"

"n∑

un = Aei(qna−ωt )

Classical picture

Page 6: NANO266 - Lecture 10 - Temperature

Direct Approach – “Frozen” phonons

Explicitly calculate the forces between every atom and construct the force constant matrix of the crystal, and hence calculate normal modes of at any particular wavevector, q. Forces can be obtained in DFT using Hellman-Feynman Theorem Pros:

•  No specialized code required (except for automating displacements, etc.) •  Faster than linear response method, especially for reasonably sized systems. •  Many existing codes to help automate such computations: Phonopy, GoBaby, etc. •  Higher order anharmonic terms can be obtained relatively easily

Cons:

•  Large supercells are needed to accurately calculate the force constant matrix.

NANO266 6

∂E∂λ

= ψλ* ∂H∂λ

ψλ dV∫

Page 7: NANO266 - Lecture 10 - Temperature

Linear Response Method – Density Functional Perturbation Theory

From the Hellman-Feynman Theorem, we have

Linearizing the electron density, we get

NANO266 7

∂E∂λi

=∂Vλ (r)∂λi

nλ (r)dr∫

∂2E∂λi∂λ j

=∂2Vλ (r)∂λi∂λ j

nλ(r)dr+∫ ∂Vλ (r)

∂λi

∂nλ(r)

∂λ j

dr∫

Δn(r) = 4Re ψ*n (r)Δψn (r)

n=1

N /2

∑Baroni, S.; de Gironcoli, S.; Dal Corso, A. Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 2001, 73, 515–562, doi:10.1103/RevModPhys.73.515.

Page 8: NANO266 - Lecture 10 - Temperature

Linear Response Method – Density Functional Perturbation Theory

From first order perturbation theory, we have where

NANO266 8

(HSCF −εn ) Δψn = −(ΔVSCF −Δεn ) Δψn

ΔVSCF (r) = ΔV (r)+ e2 Δn( "r )

r− "rd "r∫ +

dvxcdn n=n(r)

Δn(r)

Baroni, S.; de Gironcoli, S.; Dal Corso, A. Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 2001, 73, 515–562, doi:10.1103/RevModPhys.73.515.

Page 9: NANO266 - Lecture 10 - Temperature

DFPT

Pros: •  Can calculate phonon frequencies at arbitrary wave vectors q

without use of supercells! •  Scaling with range of interatomic force constants is much more

favorable.

Cons:

•  Requires specialized codes •  Cost of calculations typically higher than frozen phonons

approach.

NANO266 9

Page 10: NANO266 - Lecture 10 - Temperature

Phonon Dispersions

NANO266 10

Baroni, S.; de Gironcoli, S.; Dal Corso, A. Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 2001, 73, 515–562, doi:10.1103/RevModPhys.73.515. Gonze, X.; Rignanese, G.-M.; Caracas, R. First-principle studies of the lattice dynamics of crystals, and related properties, Zeitschrift für Krist., 2005, 220, 458–472, doi:10.1524/zkri.220.5.458.65077.

Page 11: NANO266 - Lecture 10 - Temperature

Lattice dynamical properties

NANO266 11 Togo, A.; Chaput, L.; Tanaka, I.; Hug, G. First-principles phonon calculations of thermal expansion in Ti 3SiC2, Ti3AlC2, and Ti 3GeC2, Phys. Rev. B - Condens. Matter Mater. Phys., 2010, 81, 1–6, doi:10.1103/PhysRevB.81.174301.

Page 12: NANO266 - Lecture 10 - Temperature

Electronic entropy

Probablity is given by Fermi-Dirac function

NANO266 12

hiKS = −

12∇2 −

Zk

rik+

k∑ 1

2ρ(r')ri − r'

dr∫∫ '+Vxc[ρ(r)]

hiKSψi (r) = εiψi (r) Independent one-electron eigenstates can

be occupied or not

fi =e−β (εi−εF )

1+ e−β (εi−εF )

Sel = −kB fi ln( fi )+ (1− fi )ln(1− fi )[ ]i∑

Page 13: NANO266 - Lecture 10 - Temperature

Electronic configuration entropy and the phase diagram of LiFePO4

NANO266 13

Zhou, F.; Maxisch, T.; Ceder, G. Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li_xFePO_4, Phys. Rev. Lett., 2006, 97, 155704, doi:10.1103/PhysRevLett.97.155704.

Page 14: NANO266 - Lecture 10 - Temperature

Configuration Entropy – Ising Model

If J >0 -> Ferromagnetic ground state

If J<0 -> Anti-ferromagnetic ground state

In absence of magnetic field, system is permanently magnetized at low temperatures.

At Curie temperature, Tc, phase transition occurs between magnetic and paramagnetic phases (magnetization is zero).

NANO266 14

H (σ ) = − Jijσ iσ j<ij>∑ −µ hjσ j

j∑

Page 15: NANO266 - Lecture 10 - Temperature

Cluster expansion formalism

Generalization of Ising model

Partition function

NANO266 15

E σ( ) = V0 + Viσ ii∑ + Vijσ iσ j

i, j∑ + Vijkσ iσ j

i, j,k∑ σ k +…

Z = E σ( )σ

Page 16: NANO266 - Lecture 10 - Temperature

Thermodynamic averages from Monte Carlo simulations

Sample states of a system stochastically with probabilities that match those expected physically

To perform the integral numerically,

NANO266 16

A = Aσe−βE (σ )

∫ dσ

A = Aσe−βE (σ )

∑ = Aσ p(σ )σ

Page 17: NANO266 - Lecture 10 - Temperature

Simple sampling (random choice of states) is inefficient because thermodynamic probabilities are very sharply peaked (exponential term)!

Simple sampling

NANO266 17

p(σ)

States here contributes ≈0 to integral

Nearly all the contributions to integral comes from here

Is there a better sampling method?

Page 18: NANO266 - Lecture 10 - Temperature

Detailed balance

At steady state, flux between two states must be equal, i.e.,

If the attempt distributions are symmetric, i.e., random selection,

So we set

NANO266 18

p(m)π (m→ n) = p(n)π (n→m)where π (m→ n) = a(m→ n)A(m→ n)π is the transition matrix and is given by the product of the attempt distribution aand the acceptance distribution A.

a(m→ n) = a(n→m)p(m)A(m→ n) = p(n)A(n→m)A(m→ n)A(n→m)

=p(n)p(m)

= e−β (En−Em )

A(m→ n) = e−β (En−Em ) if p(n)< p(m)1 if p(n)> p(m)

#$%

&%

Page 19: NANO266 - Lecture 10 - Temperature

Metropolis algorithm for cluster expansions

1.  Start in state {σ1, σ2, …, σn}.

2.  Choose a new set of spins by “flipping” randomly selected σi* = -σi

3.  Calculate ΔE = E({σ1,…, -σi, …, σn}) - E({σ1,…, σi, …, σn})

4.  If ΔE < 0, accept σi*. If ΔE > 0, accept σi* with probability e-βΔE.

5.  Go back to step 1.

NANO266 19

Example: Modeling a atomic orderings in an alloy

Page 20: NANO266 - Lecture 10 - Temperature

Automated Cluster Expansions

NANO266 20

van de Walle, A.; Ceder, G. Automating First-Principles Phase Diagram Calculations, J. Phase Equilibria, 2002, 23, 348–359, doi:10.1361/105497102770331596.

Page 21: NANO266 - Lecture 10 - Temperature

Application Example – Temperature-dependent Phase Diagram of P2 NaCoO2

NANO266 21 Hinuma, Y.; Meng, Y.; Ceder, G. Temperature-concentration phase diagram of

P2-NaxCoO2 from first-principles calculations. Phys. Rev. B 2008, 77, 1–16.

Page 22: NANO266 - Lecture 10 - Temperature

State of the art in Cluster Expansions

NANO266 22

Van de Walle, A. A complete representation of structure-property relationships in crystals., Nat. Mater., 2008, 7, 455–8, doi:10.1038/nmat2200.

Compressive sensing paradigm for determining ECIs

Configurational dependence of property tensors

Nelson, L. J.; Hart, G. L. W.; Zhou, F.; Ozoliņš, V. Compressive sensing as a paradigm for building physics models, Phys. Rev. B, 2013, 87, 035125, doi:10.1103/PhysRevB.87.035125.