Multi-scale simulation of heterogeneous catalysis reactions

41
Énergies renouvelables | Production éco-responsable | Transports innovants | Procédés éco-efficients | Ressources durables © 2012 - IFP Energies nouvelles Multi-scale simulation of heterogeneous catalysis reactions From quantum ab initio calculations to experimentally validated kinetic models Céline Chizallet 24/06/2015 IFP Energies nouvelles Catalysis and Separation Division Rond Point de l'échangeur de Solaize, BP3 69360 Solaize [email protected]

Transcript of Multi-scale simulation of heterogeneous catalysis reactions

Page 1: Multi-scale simulation of heterogeneous catalysis reactions

Énergies renouvelables | Production éco-responsable | Transports innovants | Procédés éco-efficients | Ressources durables

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Multi-scale simulation of heterogeneous catalysis reactions

From quantum ab initio calculations to experimentally validated kinetic models

Céline Chizallet

24/06/2015

IFP Energies nouvelles

Catalysis and Separation Division

Rond Point de l'échangeur de Solaize, BP3

69360 Solaize

[email protected]

Page 2: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

2

IFP Energies nouvelles Catalysis and Separation Division

Role of the Catalysis and Separation Division: discovering and developing new catalysts and adsorbents

For FUELS and CHEMICALS production processes

Lyon Refinery (Feyzin)

A6 Highway

IFP New Energy

Page 3: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

3

What is a catalyst ?

Chemical component which increases the RATE of a reaction

Gm°

Without catalyst

Gm°

With catalyst, active site = * R P

ΔrG°

ΔrG°

R

P

TS

ΔrG≠°

R + *

P + *

RI

TS1

TS2

ΔrG1≠° ΔrG2

≠°

RT

GΔexp

h

Tkk rB

Eyring’s law gives expression of the rate constant :

Page 4: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

4

Zooming to the atomic scale of an heterogeneous catalyst

Co(Ni)MoS

<L>=3-4 nm

Co(Ni)MoS/g-Al2O3

Page 5: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

5

Process

Units design

Force field

simulations

Mesoscale

simulations

Å nm mm mm m

Year

Hour

Minute

Second

Microsecond

Nanosecond

Picosecond

Femtosecond

Tim

e s

cale

Length scale Quantum

mechanics

HYEY

Molecular modeling

Process

simulation

(finite elements)

I-1 I+1

Process design simulation scales

Page 6: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

6

Examples of industrial relevance : Outline

1. PETROCHEMISTRY Butadiene selective hydrogenation on palladium From ab initio calculations to CFD

With L. Briquet (ENS-Lyon), P. Raybaud (IFPEN), P. Sautet (ENS-Lyon), J.M. Schweitzer (IFPEN), J. Verstraete (IFPEN), A. Hammouti (IFPEN), A. Wachs (IFPEN), M. Rolland (IFPEN)

2. BIOMASS CONVERSION CHEMICALS AND FUELS Dehydration of isopropanol on gamma-alumina From ab initio calculations to kinetic modeling + experiments

With K. Larmier (UPMC-IFPEN), H. Lauron-Pernot (UPMC), E. Marceau (UPMC), A. Nicolle (IFPEN), S. Maury (IFPEN), N. Cadran (IFPEN), AF. Lamic-Humblot (UPMC)

Page 7: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

7

Butane

2-butene

+H2

+H2 +H2

+H2 +2H2

Selective hydrogenation of butadiene

Catalyst = Supported palladium particles

Importance of reaction kinetics on selectivity

Limitations by transport phenomena exist

Multiscale problem

1-butene

Butadiene

Page 8: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

8

Integrating First-Principles Calculations Into CFD Simulations

Atomic

Scale

Kinetic

Model Macroscopic

Scale

DFT CFD Mean Field Kinetics

ΔH#, ΔS#

ΘH

ri

T, P, Ci

Schrö

din

ger

equation

Rate

equation

Eyring’s

law

Navie

r-S

tokes

equations

Home made code

Page 9: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

9

Horiuti – Polanyi reaction scheme

BD

1B4R

2B1R

• •

2B

1B

B13R

B14R

• B1R

• B2R

B BD(g) B(g)

2B(g) 1B(g)

Adsorption +1H +2H +3H +4H Desorption

H2(g) 2H(ads)

42 individual reactions

Page 10: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

10

Kinetic aspects at low hydrogen coverage

(2B1R) and butenes routes kinetically preferred over other routes

No clear conclusion regarding the competition between 1B and 2B

2B1R

Will the formation of butane be quantitative ?

Page 11: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

11

Impact of P(H2) : kinetic aspects

Horiuti – Polanyi type (Langmuir-Hinshelwood) Eley-Rideal type

Briquet et al., in preparation

Page 12: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

12

Integrating First-Principles Calculations Into CFD Simulations

Atomic

Scale

Kinetic

Model Macroscopic

Scale

DFT

VASP

CFD

PeliGRIFF

Mean Field Kinetics

ΔH#, ΔS#

ΘH

ri

T, P, Ci

Page 13: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Microkinetic modeling: Assumptions

Dynamic simulation of a gas phase CSTR reactor using a mean field

kinetic model (*)

species:

5 gas phase species + 11 surface species

42 elementary steps:

5 adsorption / desorption steps + 16 reversible surface reactions

reaction rates given by the mass action law

rate coefficients calculated from ab initio calculations at low H coverage (ΔrH,

ΔrS, ΔH#, ΔS#) using Eyring's law

full kinetic model

no assumption of rate determining steps

no quasi-steady state approximation

RT

GΔexp

h

Tkk rB From DFT

Page 14: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Microkinetic modeling: Simulations

In these conditions, - full selectivity for butenes - 1B dominates over 2B

Page 15: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Pbutadiene (bar)

PH2 (bar)

Microkinetic modeling: Deriving mean field kinetic rate equations

Approach

Rate limiting step depends on the operating conditions

H2 adsorption

BD adsorption 23242232

21

11 HBDBDHHBD

HBD

CKCKCKCCKCK

CCKr

Page 16: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

16

Atomic

Scale

Kinetic

Model Macroscopic

Scale

DFT

VASP

CFD

PeliGRIFF

Mean Field Kinetics

ΔH#, ΔS#

ΘH

ri

T, P, Ci

Integrating First-Principles Calculations Into CFD Simulations

Page 17: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Flow around a single catalyst particle

BD(g) 1B(g)

+ H2(g)

Gas flow

Pd/Al2O3

catalyst,

sphere

Butadiene (reactant) 1-butene (main-product)

Gas flow

Pd/Al2O3

catalyst,

sphere

Page 18: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Can we predict where the active sites are located ?

Can we predict the evolution of selectivity as a function of conversion ?

Alcohols conversion

18

Isopropanol

Propene

Diisopropylether

OH

O

Intra-molecular

dehydration

Inter-molecular

dehydration

Cellulose

Glucose

γ-alumina (acidic catalyst)

Aim : control of the activity and selectivity of the catalyst

Page 19: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Strategy

19

Experimental kinetics

Macroscopic scale

DFT molecular modeling

(VASP)

Molecular scale

Kinetic modeling

(Chemkin)

Reactor scale

Page 20: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Kinetic measurements, steady-state conditions

Pure γ-alumina (145 m²/g, Sasol Puralox), TR = 200 °C

3 main routes

Direct formation of propene

Direct formation of diisopropylether

Conversion of diisopropylether into propene and isopropanol

20

0

0,05

0,1

0

0,5

1

1,5

0 100 200

Eth

er p

art

ial p

ressu

re (

kP

a)

iPrO

H a

nd

Pro

pen

e P

art

ial

Pre

ssure

s (

kP

a)

Contact time (ms)

TR = 200 °C Propene

Ether

Isopropanol

Fixed-bed open reactor

Initial PiPrOH : 1.5 kPa

Flow rate: 6 - 60 cc.min-1

Larmier et al., ACS Catalysis, 2015, 5, 4423

Page 21: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Molecular-scale modeling

(100) facets – dehydrated : Lewis acidity at the origin of activity

Lewis acidic Al

21

(100)

Mechanism E2

ΔrH‡ = 125 kJ.mol-1

Propene formation Diisopropylether formation

Mechanism SN2

ΔrH‡ = 112 kJ.mol-1

Common intermediate

Aluminum

Oxygen

Hydrogen

Carbon

Top view Side view

All reactions occur on the same facet : morphology of alumina platelets tunes the activity, but not the selectivity

Page 22: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Reactor-scale modeling

22

Site description

Chemkin software

Conditions : TR = 200 °C, PiPrOH(0) = 1.5 kPa

Main active site

Site for propene adsorption

Inhibition by water

Site for 2nd isopropanol

and ether formation

(100) surface

Page 23: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

4 gas-phase species

15 surface species

34 reactions

23

Reactor-scale modeling

Larmier et al., in preparation

I

I

I W

W

P

I

W

I E

E

P

W

E

I

I W

W

P

P

I W I E

I E

W W

E

W

Page 24: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Simulation results : very good agreement with experiments

Marks : experimental data

Lines : kinetic modeling (‘DFT model’)

24

0

0,05

0,1

0

0,5

1

1,5

0 200 400

Diisop

rop

yle

the

r p

art

ial

pre

ssure

(kP

a)

Iso

pro

pa

no

l an

d P

rop

ene

Pa

rtia

l Pre

ssu

res (

kP

a)

0

10

20

30

40

0 20 40 60 80 100S

ele

ctivity to

eth

er (%

)

Isopropanol conversion (%) mcata.Q-1 (g.s.L-1)

Reactor-scale modeling

Larmier et al., in preparation

Page 25: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

25

Conclusions and perspectives

Reactor simulations, including CFD aspects, can be built on the basis of quantum ab initio calculations Proof of concept

Extend this method to other fields of refining, petrochemistry, depollution, etc. A research project is devoted to this at IFPEN

Make the bridge between multiple scales smoother Towards the integration of methods ?

Page 26: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

26

Acknowledgements

H. Toulhoat P. Raybaud A. Nicolle J.M. Schweitzer J. Verstraete A. Wachs A. Hammouti M. Rolland

Calculation time and funding

P. Sautet L. Briquet

[email protected]

K. Larmier E. Marceau A.F. Lamic-Humblot H. Lauron-Pernot

Page 27: Multi-scale simulation of heterogeneous catalysis reactions

Énergies renouvelables | Production éco-responsable | Transports innovants | Procédés éco-efficients | Ressources durables

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

www.ifpenergiesnouvelles.fr

Énergies renouvelables | Production éco-responsable | Transports innovants | Procédés éco-efficients | Ressources durables

Page 28: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

28

Impact of P(H2) : thermodynamic aspects

H / Pd(111)

-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1012

100 200 300 400 500 600 700 800 900

T (K)

log

(P

H2/P

°)

2 ML

0 ML

1 ML0.25 ML

0.5 ML

0.75 ML

-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1012

100 200 300 400 500 600 700 800 900

T (K)

log

(P

H2/P

°)

0 ML

2 ML

1 ML

1.75 ML0.5 ML

-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1012

100 200 300 400 500 600 700 800 900

T (K)

log

(P

H2/P

°)

0 ML

2 ML

1 ML

1.75 ML0.5 ML

Chizallet, C.; Bonnard, G.; Krebs, E.; Bisson, L.; Thomazeau, C.; Raybaud, P., J. Phys. Chem. C 2011, 115, 12135.

Butadiene / H / Pd(111)

Trans tetra-σ

Trans 3,4-diσ

Trans 1,2-π-3,4-diσ

Higher θH expected Impact of θH on the adsorption mode of butadiene

Page 29: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

29

BD(ads) BD(g)

1B4R

2B1R

[TS]#

[TS]#

Impact of P(H2) : intermediates and transition states

Page 30: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Microkinetic modeling: Simulations

In these conditions,

full selectivity for butenes

1B dominates over 2B

MASI: H* > BD* >>> ...

Adsorbate concentrations

Su

rfa

ce

co

ve

rag

e (

mo

l/m

3)

Page 31: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

31

Page 32: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

32

Page 33: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

II – Modélisation moléculaire

Formation du propène - mécanismes envisageables :

Mécanisme E1 :

Rupture liaison C-O

Puis rupture liaison C-H

Intermédiaire : carbocation

Mécanisme E1cb :

Rupture liaison C-H

Puis rupture liaison C-O

Intermédiaire : carbanion

Mécanisme E2 :

Rupture C-H et C-O simultanée

Pas d’intermédiaire

2 – Surface (100) – Formation du propène

OH

H

+ OH-

H +

+ H+ , OH-

OH

H

+ H+

-

+ H+ , OH- OH

OH

H

+ H+ , OH-

Carbocation

Carbanion

Surface d’alumine

non représentée

33

(100)

Page 34: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

H (kJ.mol-1)

0

Alcool adsorbé

Alcool dissocié

3

‡ Etat de transition

II – Modélisation moléculaire

2 – Surface (100) – Formation du propène

34

(100)

Page 35: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

H (kJ.mol-1)

0

Alcool adsorbé

Carbocation

Propène + eau

E1

201

3

‡ Etat de transition

II – Modélisation moléculaire

2 – Surface (100) – Formation du propène

Alcool dissocié

35

(100)

Page 36: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

H (kJ.mol-1)

0

Alcool adsorbé

Carbanion

Propène + eau

E1 cb

143

37

3

‡ Etat de transition

II – Modélisation moléculaire

2 – Surface (100) – Formation du propène

Alcool dissocié

36

(100)

Page 37: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

H (kJ.mol-1)

0

Alcool adsorbé

Propène + eau

E2

126

3

‡ Etat de transition

II – Modélisation moléculaire

2 – Surface (100) – Formation du propène

Alcool dissocié

37

(100)

Page 38: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

H (kJ.mol-1)

0

Alcool adsorbé

Carbanion

Carbocation

Propène + eau

E1

E1 cb

E2

201 143

37

126

3

‡ Etat de transition

II – Modélisation moléculaire

2 – Surface (100) – Formation du propène

Alcool dissocié

38

(100)

Page 39: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Molecular-scale modeling

(110) facets – partially hydrated (θOH ≈ 9.0 OH.nm-2)1

Propene formation

Lewis mechanism: E2, ΔrH‡ = 158 kJ.mol-1

Brønsted mechanism: ΔrH‡ > 200 kJ.mol-1

Ether formation

Lewis mechanism : SN2, ΔrH‡ = 140 kJ.mol-1

Brønsted mechanism : not possible

Brønsted acidic H

Lewis acidic Al

1 Raybaud et al. Journal of Physics - Condensed Matter, 2008

Rate constants (110) =

(110) facets less reactive than (100) facets

39

(110)

Rate constants (100)

1000

Page 40: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

Molecular-scale modeling

One common active site on the (100) surface for both reactions

Comparison with experimental results (ΔrH‡ in kJ.mol-1)

Propene formation activation entropically favored

Reaction Active facets Modeling Experiments*

ΔrS‡ ΔrH

‡ ΔrH‡

Propene formation (100) -8 126 128 ± 5

Ether formation (100) -36 112 118 ± 5

40

* Conversion < 10 %

Temperature : 165 to 210 °C

Initial iPrOH partial pressure : 1.5 kPa

Flow rate: 60 cc.min-1

(110)

(100)

Page 41: Multi-scale simulation of heterogeneous catalysis reactions

© 2

012 -

IF

P E

nerg

ies n

ouve

lles

“DFT model” – explicit site description

4 gas-phase species

15 surface species

34 reactions …

41

“Analytic model” – implicit site description

4 gas-phase species

0 surface specie

3 reactions only

iPrOH => Propene + H2O

2 iPrOH => DIPE + H2O

DIPE => Propene + iPrOH

Inhibitions :

I

I

I W

W

P

I

W

I E

E

P

W

E

I

IW

W

P

P

I WI E

I E

W W

E

W

Reactor-scale modeling