Modal expansion methods for modeling of photonic...

108
Modal expansion methods for modeling of photonic devices Jiˇ ı Petr´ cek Brno University of Technology Technick´ a 2, 616 69 Brno, Czech Republic [email protected] May 30, 2007

Transcript of Modal expansion methods for modeling of photonic...

Page 1: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Modal expansion methods for modeling of photonicdevices

Jirı PetracekBrno University of Technology

Technicka 2, 616 69 Brno, Czech [email protected]

May 30, 2007

Page 2: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction

2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 3: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion

3 Analysis of 1D structure – ε(y)TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 4: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 5: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 6: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 7: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 8: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 9: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

How does light propagate in photonic device?

Answer: Maxwell equations.Strategy:

we suppose time-harmonic field ∼ exp (iωt) with given ω or λ, i.e.we solve in frequency domain

the device is described with refractive index n(x, y, z) or relativepermittivity ε(x, y, z) – these functions are complex and depend onω

then we solve Maxwell equations to find ~E, c ~B

Page 10: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Maxwell equations

Convention: To keep formulation as simple as possible we use c ~B insteadof ~H and dimensionless coordinates

(x, y, z) =2πλ(X, Y, Z) =

ω

c(X, Y, Z)

β = neff , kvacuum = 1

~∇× c ~B = iε ~E (1)~∇× ~E = −ic ~B (2)

Page 11: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Rigorous methods

Finite-difference

Finite-element

Modal expansion methods (“Mode-matching”)

Method of lines

Spectral index

...

Page 12: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Tasks to be solved

1 Searching for waveguide modes and propagation constants - “Modesolvers”– stationary state, eigenvalue problem

2 Modeling of light propagation (i.e. evolution of the em field) inphotonic devices (e.g. “BPM” = Beam propagation method)– evolving state

Page 13: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Mode solvers

��������

����

x

y

z

��

����

6

-

ε(x, y, z) = ε(x, y) (2D task) (3)

ε(x, y, z) = ε(y) (1D task) (4){~E(x, y, z)

c ~B(x, y, z)

}=

{~Eν(x, y)

c ~Bν(x, y)

}exp (−iβνz) (5)

mode profile? propagation constant?

Page 14: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Mode profiles of step-index optical fiber

n1 = 1, 5, n2 = 1, 495, a/λ = 10

Page 15: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Light propagation

– device can change along z– we know incident field i.e. ~E, c ~B at z = 0– we search for ~E, c ~B for any zTwo kinds of methods:(i) one-way methods use paraxial approximation, reflections are neglected(ii) bi-directional methods can deal with reflected field, can calculatereflected and transmitted power and loss.

Page 16: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

BPM example

Page 17: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 18: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Eigenmode expansion

See e.g. [1].Suppose that the waveguide structure is uniform for z ∈ (z1, z2). Generalsolution of the Maxwell equations in (z1, z2) is a sum of forward andbackward-traveling modes: {

~E(x, y, z)c ~B(x, y, z)

}=

=∑ν∈N

[fν

{~Eν(x, y)

c ~Bν(x, y)

}exp (−iβνz) + bν

{~E−ν(x, y)

c ~B−ν(x, y)

}exp (iβνz)

].

(6)

Page 19: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 20: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

One-dimensional structure

ε = ε(y) (7)

If we suppose∂

∂x

{~E

c ~B

}= 0 (8)

we obtain TE and TM solutions (modes) of the Maxwell equations.

Page 21: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 22: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

TE modes

Ex

Ey

Ez

cBx

cBy

cBz

=

ϕhk(y)000

βhkϕhk(y)−iϕ′hk(y)

exp (−iβhkz) (9)

ϕ′′hk(y) + ε(y)ϕhk(y) = β2hkϕhk(y) (10)

Page 23: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

TM modes

Ex

Ey

Ez

cBx

cBy

cBz

=

0−βekϕek(y)/ε(y)

iϕ′ek(y)/ε(y)ϕek(y)00

exp (−iβekz) (11)

[1

ε(y)ϕ′ek(y)

]′+ ϕek(y) = β2ek

1ε(y)

ϕek(y) (12)

Page 24: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Eigenvalue problem

Eqs. (10) and (12) can be written in unique form

Lp(y)ϕpk(y) = β2pkηp(y)ϕpk(y) (13)

Lp(y)ϕpk(y) ≡[ηp(y)ϕ

′pk(y)

] ′ + ηp(y)ε(y)ϕpk(y) (14)

ηp(y) ≡{1 p = h1/ε(y) p = e

(15)

Note:– β2pk and ϕpk(y) are eigenvalues and eigenfunctions of Lp(y)– for each β2pk there are two modes ±βpk propagating in ±z– to solve the problem in 〈ymin, ymax〉 we need to know boundaryconditions at ymin and ymax

Page 25: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Boundary conditions

Name Condition at ymin or ymax

Open B.C. ϕpk, ϕ′pk are finite

Closed B.C. – Electric wall ~Et = 0 i.e. ϕhk = 0, ϕ′ek = 0

Closed B.C. – Magnetic wall c ~Bt = 0 i.e. ϕ′hk = 0, ϕek = 0

...

Page 26: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 27: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Transfer matrix method

is technique for solving Eq.(13) in multilayer waveguide [4, 5, 6, 7]. Thewaveguide consists of N layers. dn and εn are thickness and relativepermittivity of layer n, n = 0..N − 1.

6y

y0ε0, d0

y1ε1, d1

y2ε2, d2

y3

...

yNεN−1, dN−1

yN−1

Page 28: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Solution in layer n

Choose yn = 0

ϕn(y) = fn exp (−iαny) + bn exp (iαny) (16)

= fn exp [iαn (dn − y)] + bn exp [−iαn (dn − y)] (17)

= An cos (αny) +Bn

αnsin (αny) (18)

= An cos [αn (dn − y)]− Bn

αnsin [αn (dn − y)] (19)

= · · · (20)

αn =√

εn − β2. (21)

Page 29: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Transfer matrix and “matching” conditions

Realizing that An and Bn are values of function ϕ(y) and its derivativeat y = yn and using continuity conditions for normal and tangentialcomponents of electric and magnetic field we obtain(

An+1

Bn+1ηn+1

)=

=

(cos(αndn) sin(αndn)/ (αnηn)

−αnηn sin(αndn) cos(αndn)

)(An

Bnηn

) (22)

for any n = 0..N − 1.

Page 30: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Dispersion equation

As a consequence if we know β and An, Bn for some n we can calculatethe all An, Bn. This can be used to find radiation modes and reflectionand transmission coefficients. On the other hand if we know A0, B0 andAN , BN we can obtain implicit dispersion equation for unknown β2. Wechoose layer n and compare A+n , B

+n with A−

n , B−n . A+n , B

+n are

calculated from known A0, B0 and A−n , B

−n are calculated from known

AN , BN . Values of A0, B0, AN and BN depend on type of boundaryconditions used.

∆n(β2) = A+n B−

n −A−n B+n = (B

−n , −A−

n )

(A+nB+n

)= 0 (23)

Page 31: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Root searching

Roots on real axis β2 (bound modes of a waveguide with real indexprofile) are searched using standard numerical routines [8]. Complexroots (leaky modes, active or passive waveguide) are searched using“root-tracking” technique [9] or rigorous technique that uses analyticityof the dispersion function [10, 11, 12, 13], see also [14, 15, 16, 17].

Page 32: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 33: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Orthogonality relations

For simplicity we suppose closed boundary conditions.ymax∫

ymin

ηp(y)ϕpk(y)ϕpl(y)dy = δkl (24)

1β2el

ymax∫ymin

ηe(y)ϕhk(y)ϕ′el(y)dy +

1β2hk

ymax∫ymin

ηe(y)ϕ′hk(y)ϕel(y)dy = 0 (25)

The both relations can be derived from (13) [3, 2]. Note that theserelations are valid for ε complex. (For ε real we can also use relationswith complex conjugate fields.)

Page 34: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 35: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

E- and H-type modes

See e.g. [2]We do not suppose (8). As ε does not depend on x and z the solution ofthe Maxwell equations can be expressed using

~kpk = (kxpk, 0, kzpk) (26)

Instead of (5) we have{~E(x, y, z)

c ~B(x, y, z)

}=

{~Epk(y)

c ~Bpk(y)

}exp (−ikxpkx− ikzpkz) (27)

Choose system (u, y, v) in such a way that ~kpk = (0, 0, βpk)

β2pk = k2xpk + k2zpk (28)

Page 36: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Rotation of TE mode

-

?

�����

����*

AAAAAAAAAU

x

z

u

v

Θ

Θ

AAAAAAAU~k

-

kx~ex

?kz~ez

����

��*~E

Page 37: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

H-modes

Transformation of (9)

Ex

Ey

Ez

cBx

cBy

cBz

=1

βhk

kzhkϕhk(y)0

−kxhkϕhk(y)−ikxhkϕ

′hk(y)

β2hkϕhk(y)−ikzhkϕ

′hk(y)

exp (−ikxhkx− ikzhkz) (29)

Page 38: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

E-modes

Transformation of (11)

Ex

Ey

Ez

cBx

cBy

cBz

=1

βek

ikxekηe(y)ϕ′ek(y)−β2ekηe(y)ϕek(y)ikzekηe(y)ϕ′ek(y)

kzekϕek(y)0

−kxekϕek(y)

exp (−ikxekx− ikzekz) (30)

Page 39: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 40: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Propagation in 2D structure – ε(y, z)

The technique is often called “Bi-directional eigenmode expansion andpropagation method” – BEP, [18, 19]

The 2D waveguide is divided into a sequence of M uniform sectionswhich are separated by vertical lines. The refractive index in eachsection is function of y coordinate only. The total field in eachsection is expanded into set of TE or TM modes of that section(= local eigenmodes). The mode spectrum is discretised by closingcomputational domain in y direction by electric or magneticconductors.

(“Mode Matching”) At the interfaces between all neighbouringsections the conditions for continuity of electric and magnetic fieldare used.

Page 41: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Model of 2D structure

6y

- z⊗

x

ymin

ymax

ε(m−1)(y)

d(m−1)

ε(m)(y)

d(m)

ε(m+1)(y)

d(m+1)

z(m) z(m+1)

· · · · · ·

Electric ormagnetic wallsPPPPPi

��

���

Page 42: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Approximations

1 The continuous part of local eigenmodes spectra has to bediscretised and this is achieved by closing computational domain intransverse direction by suitable artificial boundaries.

2 Spatial resolution of the method depends on the number of localeigenmodes used [20].

3 Staircase approximation is used to model curvature interfaces.

Page 43: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Note that 1 does not apply for devices which are closed or periodic intransverse direction as the local eigenmodes are naturally discrete.However, for open devices this approximation causes serious problemwhich can be solved using various techniques, for example the PerfectlyMatched Layers (PML). Approximations 2 and 3 do not causecomplications in most cases as fast convergence of results with increasingnumber of local eigenmodes or stairs is usually observed.

Page 44: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 45: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Field expansion in section m

TE solution

Ex(y, z) =∑

k

uk(z)ϕk(y) (31)

cBy(y, z) = i∑

k

u′k(z)ϕk(y) (32)

cBz(y, z) = −i∑

k

uk(z)ϕ′k(y) (33)

TM solution

cBx(y, z) =∑

k

uk(z)ϕk(y) (34)

Ey(y, z) = −iη(y)∑

k

u′k(z)ϕk(y) (35)

Ez(y, z) = iη(y)∑

k

uk(z)ϕ′k(y) (36)

Page 46: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

choose z(m) = 0

uk(z) = fk exp(−iβkz) + bk exp(iβkz) (37)

= fk exp [iβk(d− z)] + bk exp [−iβk(d− z)] (38)

= Ak cos(βkz) +Bk

βksin(βkz) (39)

= Ak cos [βk(d− z)]− Bk

βksin [βk(d− z)] (40)

u′k(z) = · · · (41)

Page 47: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 48: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Mode matching

Compare field at z(m+1):Continuity of Ex or cBx, see (31) or (34)∑

k

u(m)k (z(m+1))ϕ(m)k (y) =

∑k

u(m+1)k (z(m+1))ϕ(m+1)k (y)∑

k

A(m)k ϕ

(m)k =

∑k

A(m+1)k ϕ

(m+1)k (42)

multiply η(m)ϕ(m)l and integrate

∑k

ymax∫ymin

A(m)k ϕ

(m)k η(m)ϕ

(m)l dy =

∑k

ymax∫ymin

A(m+1)k ϕ

(m+1)k η(m)ϕ

(m)l dy

use (24)

Page 49: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

A(m)l =

∑k

Q(m,m+1)lk A

(m+1)k (43)

Q(m,n)lk ≡

ymax∫ymin

η(m)ϕ(m)l ϕ

(n)k dy (44)

Alternatively Eq. (42) can be solved with respect to A(m+1)k

A(m+1)l =

∑k

Q(m+1,m)lk A

(m)k (45)

Page 50: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Continuity of cBy or Ey

B(m)l =

∑k

O(m,m+1)lk B

(m+1)k , (46)

B(m+1)l =

∑k

O(m+1,m)lk B

(m)k , (47)

O(m,n)lk ≡

ymax∫ymin

η(n)ϕ(m)l ϕ

(n)k dy. (48)

Page 51: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Relations among overlap integrals

It follows from (43) – (46)[O(n,m)lk

]−1= O

(m,n)lk ≡ Q

(n,m)kl , (49)[

Q(n,m)lk

]−1= Q

(m,n)lk ≡ O

(n,m)kl . (50)

For TE only:

Q(m,n)lk = O

(m,n)lk , (51)

O(m,n)lk = Q

(n,m)kl . (52)

Page 52: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 53: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

S-matrix method

Motivation: solution using transfer matrix is unstable because we addexp (iβkz) and exp (−iβkz) and these can be big and small numbers.The source of instability:

(Big + Small)− Big = 0 not Small!

Solution: S- or R-matrix technique [22]. S-matrix is used in e.g. [19, 21].

Page 54: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

What is S-matrix?

It provides relation between amplitudes of output and input modes(f (2)

b(1)

)=

(t rr t

)(f (1)

b(2)

)≡ S

(f (1)

b(2)

)(53)

-f (1)

�b(1)

-f (2)

�b(2)

Ir

R

r

-t

�t

-zz(1) z(2)

Page 55: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Composition law

1

← b(1)

→ f (1)

2

← b(2)

→ f (2)

3

← b(3)

→ f (3)

- zS(1) S(2)

1

← b(1)

→ f (1)

3

← b(3)

→ f (3)

- zS = S(1) ⊗ S(2)

Page 56: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

(f (2)

b(1)

)= S(1)

(f (1)

b(2)

),

(f (3)

b(2)

)= S(2)

(f (2)

b(3)

)(

f (3)

b(1)

)= S

(f (1)

b(3)

)

S ≡ S(1) ⊗ S(2) =(

t(2)J−1t(1) t(2)r(1)K−1t(2) + r(2)

t(1)r(2)J−1t(1) + r(1) t(1)K−1t(2)

)J ≡ 1− r(1)r(2), K ≡ 1− r(2)r(1)

Page 57: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Definitions

u(m)(z) = {u(m)k (z)}

f (m) = {f (m)k } b(m) = {b(m)k }

f (m) = {f (m)k } b(m) = {b(m)k }

K(m) = {K(m)kk } = {iβ(m)k },

P (m)(d) = exp(−K(m)d

)

Page 58: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Expression for the field

u(m)(z) = P (m)(z − z(m)

)f (m) + P (m)

(z(m+1) − z

)b(m)[

u(m)(z)]′= −K(m)

[P (m)

(z − z(m)

)f (m) − P (m)

(z(m+1) − z

)b(m)

]

Page 59: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

S-matrix of uniform section

(f (m)

b(m)

)=

(P (m)

(d(m)

)0

0 P (m)(d(m)

) )( f (m)

b(m)

)≡ S(m)

(f (m)

b(m)

)

Page 60: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

S-matrix at boundary

It follows from (45) and (47)

f (m+1) + b(m+1) = Q(m+1,m)(f (m) + b(m)

),

K(m+1)(f (m+1) − b(m+1)

)= O(m+1,m)K(m)

(f (m) − b(m)

).

This can be rewritten into form(f (m+1)

b(m)

)= S(m,m+1)

(f (m)

b(m+1)

)

S(m,m+1) ≡

(2(K(m)D(+)−1

)T −(D(−)D(+)−1

)TD(+)−1D(−) 2D(+)−1K(m+1)

)D(±) ≡ O(m+1,m)K(m) ±K(m+1)Q(m+1,m)

Page 61: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

S-matrix of the whole structure

S = S(0) ⊗ S(0,1) ⊗ S(1) ⊗ S(1,2) ⊗ . . .⊗ S(M−2,M−1) ⊗ S(M−1)

(f (M)

b(0)

)= S

(f (0)

b(M)

)

Page 62: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Waveguide with Bragg grating

Calculate modal power reflectance R, transmittance T and lossL = 1−R− T . For details see: www.ure.cas.cz/dpt130/cost268 and[23].

Page 63: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek
Page 64: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Convergence with increasing number of local modes

Page 65: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Poynting vector

Page 66: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 67: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

How to represent radiation modes?

Continuous spectrum of radiation modes can be discretised using

closed boundary conditions – electric or magnetic walls

leaky modes [24, 25]

direct sampling [26]

adaptive sampling [27, 28]

transparent boundary condition [29] (TBC), originally used in BPM[30]

Page 68: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Perfectly matched layer (PML)

Problem: We should avoid parasitic reflections.PML is an artificial material that can absorb radiation without anyparasitic refection at its interface, regardless of wavelength, incidenceangle or polarisation [31, 32, 33, 34].According to [29], the most efficient way is to use closed boundaryconditions + PML

Page 69: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Complex coordinate stretching

is one form of PML [33, 35] particularly suitable for our method [19, 29].Thickness of PML (d0 or dN−1) is complex. (β2 gets complex, we needto use root-tracking technique in which we change Im(d)).If ε0 = ε1 there are no reflections at y1. The wave inside of PML

exp(−iαy)

is absorbed because y is complex, e.g.

Im(y) =Re(y)Re(d)

Im(d)

Page 70: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Movement of roots during searching of PML modes

Page 71: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: calculation with and without PML

Page 72: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 73: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Bloch modes

Solution of the Maxwell equations in periodic media [36]. If we knowS-matrix of the period with length a then{

f (M)

b(M)

}= γ

{f (0)

b(0)

}≡ exp (−ikFBa)

{f (0)

b(0)

}(

γf (0)

γ−1b(M)

)= S

(f (0)

b(M)

)≡(

t rr t

)(f (0)

b(M)

)This can be rewritten into (linear) form of the generalized eigenvalueproblem (

t r0 1

)(f (0)

b(M)

)= γ

(1 0r t

)(f (0)

b(M)

). (54)

Bloch modes can be used to improve BEP performance see e.g. [37].

Page 74: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Modeling of 2D photonic crystals

– One of the most exciting developments in physics is discovery ofphotonic crystals [36].– Plane wave method, PWM– Hexagonal lattice, Γ-K, empty pillars in InP with ε=10.5, crystal lengthis 10a, area of holes/area of crystal is 0.4

Page 75: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Dependence R, T on a/λ for TE wave

Page 76: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Electric field profiles

In band-gap a/λ = 0.280.

high T : a/λ = 0.351

Page 77: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Band structure

Page 78: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Line defect

Page 79: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 80: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Modes of 3D waveguide – ε(x, y)

The technique is often called “Mode matching method” – MMM,[2, 38, 7, 1, 20].The waveguide cross-section is divided into a sequence of M uniformsections which are separated by vertical lines. Each section can be viewedas a part of a 2D waveguide (the refractive index in each section isfunction of y coordinate only) and TE and TM modes (= local modes)of such a 2D waveguide can be found and normalized. The modespectrum is discretised by closing computational domain in y direction byelectric or magnetic walls. The computational domain is not limited in xdirection, except possible walls resulting from waveguide symmetry.MMM is based on the expansion of the unknown modal field into localmodes in each section. Consequently tangential components of themodal field are matched at the section interfaces and this results in anonlinear eigenvalue problem. The spatial resolution of the methoddepends on the number of local mode pairs used [20].

Page 81: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Model of the waveguide cross-section

6y

- x⊙

z

ymin

ymax

ε(m−1)(y)

d(m−1)

ε(m)(y)

d(m)

ε(m+1)(y)

d(m+1)

x(m) x(m+1)

· · · · · ·

Electric ormagneticwalls

PPPPPi

��

���

Page 82: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 83: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Full vector expansion in section m

As (8) is not valid we have to use E- and H-modes (29) and (30). Thesemodes can be viewed as “propagating” in ±x directions so that (6) takesthe form{

~E(x, y, z)c ~B(x, y, z)

}=∑pk

[fpk

{~Epk(y, z)

c ~Bpk(y, z)

}exp (−ikxpkx) +

+bpk

{~E−pk(y, z)

c ~B−pk(y, z)

}exp (ikxpkx)

]

Page 84: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Full vector expansion in section m

Ex(x, y) = kz

∑k

uhk(x)ϕhk(y)−1

ε(y)

∑k

u′ek(x)ϕ′ek(y) (55)

Ey(x, y) = − 1ε(y)

∑k

uek(x)β2ekϕek(y) (56)

Ez(x, y) = −i∑

k

u′hk(x)ϕhk(y) +ikz

ε(y)

∑k

uek(x)ϕ′ek(y) (57)

cBx(x, y) =∑

k

u′hk(x)ϕ′hk(y) + kz

∑k

uek(x)ϕek(y) (58)

cBy(x, y) =∑

k

uhk(x)β2hkϕhk(y) (59)

cBz(x, y) = −ikz

∑k

uhk(x)ϕ′hk(y)− i

∑k

u′ek(x)ϕek(y) (60)

Page 85: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Full vector expansion in section m

kxpk = (β2pk − k2z)

1/2 (61)

upk(x) =Apk

β2pk

cos(kxpkx) +Bpk

kxpksin(kxpkx) (62)

=Apk

β2pk

cos [kxpk(d− x)]−Bpk

kxpksin [kxpk(d− x)] (63)

u′pk(x) = · · · (64)

Apk

β2pk

=Apk

β2pk

cos(kxpkd) +Bpk

kxpksin(kxpkd) (65)

Bpk = −kxpkApk

β2pk

sin(kxpkd) +Bpk cos(kxpkd) (66)

Page 86: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Matrix formulation

diagonal matrices T(m)p and S

(m)p in section m

T(m)pkk ≡

k(m)xpk

β(m)2pk tan

[k(m)xpkd

(m)x

] (67)

S(m)pkk ≡

k(m)xpk

β(m)2pk sin

[k(m)xpkd

(m)x

] (68)

rewrite (65) a (66) into stable form used in R-matrix technique [22, 7]

B(m)p = −T (m)p A(m)p + S(m)p A(m)p (69)

B(m)p = −S(m)p A(m)p + T (m)p A(m)p (70)

Page 87: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Boundary conditions at z(0) or z(M)

If A(0)p = 0 or A(M−1)p = 0, Eqs. (69), (70) turn into form

B(M−1)p = −T (M−1)

p A(M−1)p , (71)

B(0)p = T (0)p A(0)p . (72)

If B(0)p = 0 or B(M−1)p = 0, we use again (71), (72), with

T(b)pkk ≡ −

k(b)xpk

β(b)2pk

tan[k(b)xpkd

(m)x

], b = 0,M − 1.

For open boundary

u(b)′pk = ±ik

(b)xpku

(b)pk , b = 0,M − 1

we use again (71), (72), with

T(b)pkk ≡ ±

k(b)xpk

β(b)2pk

Page 88: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 89: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Mode matching

A(m)h = O

(m,m+1)hh A

(m+1)h (73)

B(m)h = O

(m,m+1)hh B

(m+1)h − kzO

(m,m+1)he A(m+1)e (74)

A(m)e = O(m,m+1)ee A(m+1)e (75)

B(m)e = O(m+1,m)Tee B(m+1)e + kzO(m+1,m)The A

(m+1)h (76)

Page 90: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Overlap integrals

O(m,n)pplk ≡

ymax∫ymin

η(n)p ϕ(m)pl ϕ

(n)pk dy (77)

Q(m,n)pplk ≡

ymax∫ymin

η(m)p ϕ(m)pl ϕ

(n)pk dy (78)

X(m,n)helk ≡ 1

β(n)2ek

ymax∫ymin

η(n)e ϕ(m)hl ϕ

(n)′ek dy (79)

Y(m,n)helk ≡ 1

β(n)2hk

ymax∫ymin

η(m)e ϕ(m)el ϕ

(n)′hk dy (80)

O(m,n)helk ≡ Y

(n,m)The +X

(m,n)he (81)

Page 91: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Dispersion equation

Using (69), (70) (0 < m < M − 1), (71), (72) and (73), (75) we removeB, B and A from Eqs. (74) and (76). The result is set of nonlinearequations for eigenvector A

(m)p and eigenvalue kz [7]

M(kz)U = 0 (82)

This problem can be solved by searching for roots of determinant ofMwith the inverse iteration technique. The “root tracking” technique wasused to find eigenvalues in the complex plane.

Page 92: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

U ≡

A(1)h

A(1)e

A(2)h

A(2)e

.

.

A(M−1)h

A(M−1)e

Page 93: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

M≡

P(1)h Z

(1)h R

(1)h

Z(1)e P

(1)e 0 R

(1)e

W(2)h 0 P

(2)h Z

(2)h R

(2)h

W(2)e Z

(2)e P

(2)e 0 R

(2)e

......

W(M−1)h 0 P

(M−1)h Z

(M−1)h

W(M−1)e Z

(M−1)e P

(M−1)e

Dimension ofM is 2(M − 1)L

Page 94: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

P (m)p ≡ O(m−1,m)Tpp T (m−1)p O(m−1,m)pp + T (m)p ,

W (m)p ≡ −O(m−1,m)Tpp S(m−1)p ,

R(m)p ≡ −O(m,m+1)pp S(m)p ,

Z(m)h ≡ kzO

(m−1,m)Thh O

(m−1,m)he ,

Z(m)e ≡ −kzO(m−1,m)Tee O

(m,m−1)The

Page 95: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Dominant modes of rib waveguide

Page 96: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Example: Surface plasmon mode

Page 97: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek
Page 98: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Outline1 Introduction2 Eigenmode expansion3 Analysis of 1D structure – ε(y)

TE and TM modesTransfer matrix methodOrthogonality relationsE- and H-type modes

4 Propagation in 2D structure – ε(y, z)Field expansionMode matchingS-matrix methodPerfectly matched layer (PML)Bloch modes

5 Modes of 3D waveguide – ε(x, y)Full vector expansion in uniform sectionMode matching and numerical technique

6 Conclusions

Page 99: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Conclusions

Advantages

straightforward, no hidden parameters

no need to generate mesh

accurate, no approximations

can be used for quick estimation

relatively fast

Disadvantages

complicated formulation

nonlinear eigenvalue problem

Page 100: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

C. Vassallo,Optical Waveguide Concepts.Elsevier, Amsterodam, 1991.

S. T. Peng, A. A. Oliner,“Guidance and Leakage Properties of a Class of Open DielectricWaveguides: Part I – Mathematical Formulations,”IEEE Trans. Microwave Theory Tech. MTT-29, 843-854, 1981.

A. D. Bresler, G. H. Joshi, N. Marcuvitz,“Orthogonality Properties for Modes in Passive and Active UniformWave Guides,”J. Appl. Phys. 29, 794-799, 1958.

J. Chilwell, I. Hodgkinson, “Thin-films field-transfer matrix theory ofplanar multilayer waveguides and reflection from prism-loadedwaveguides,” J. Opt. Soc. Amer. A 1, 742-753, 1984.

L. M. Walpita,“Solutions for planar optical waveguide equations by selecting zeroelements in a characteristic matrix,”

Page 101: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

J. Opt. Soc. Amer. A 2, 595-602, 1985.

R. Marz,Integrated Optics. Design and Modelling.Artech House, Boston, 1995.

A. S. Sudbø,“Film mode matching: a versatile numerical method for vector modefield calculations in dielectric waveguides,”J. Europ. Opt. Soc. 2, 211-233, 1993.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling:Numerical Recipes.Cambridge University Press, Cambridge, 1986.

J. Petracek, K. Singh,“Determination of Leaky Modes in Planar Multilayer Waveguides,”Photonics Technol. Lett. 14, 810-812, 2002.

L. M. Delves, J. N. Lyness,“A numerical method of locating zeros of an analytic function,”Math. Comput. 21, 543-577, 1967.

Page 102: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

L. C. Botten, M. S. Craig, R. C. McPhedran,“Complex zeros of an analytic functions,”Comp. Phys. Com. 29, 245-257, 1983.

R. E. Smith, S. N. Houde-Walter, G. W. Forbes,“Numerical determination of planar waveguide modes using theanalyticity of the dispersion relation,”Opt. Lett. 16, 1316-1318, 1991.

E. Anemogiannis, E. N. Glytsis“Multilayer Waveguides: Efficient Numerical Analysis of GeneralStructures,”J. Lightwave Technol. 10, 1344-1351, 1992.

R. E. Smith, S. N. Houde-Walter, G. W. Forbes,“Mode Determination for Planar Waveguides Using the Four-SheetedDispersion Relation,”IEEE J. Quantum Electron. 28, 1520-1526, 1992.

R. E. Smith, G. W. Forbes, S. N. Houde-Walter,“Unfolding the Multivalued Planar Waveguide Dispersion Relation,”

Page 103: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

IEEE J. Quantum Electron. 29, 1031-1034, 1993.

R. E. Smith, S.N. Houde-Walter,“The Migration of Bound and Leaky Solutions to the WaveguideDispersion Relation,”J. Lightwave Technol. 11, 1760-1768, 1993.

A. Bakhtazad, H. Abiri, R. Ghayour,“A General Transform for Regularizing Planar Open WaveguideDispersion Relation,”J. Lightwave Technol. 15, 383-390, 1997.

G. Sztefka, H.P. Nolting, “Bidirectional Eigenmode Propagation forLarge Refractive Index Steps,” IEEE Photon. Technol. Lett. 5,554-557, 1993.

P. Bienstman, R. Baets, “Optical modelling of photonic crystals andVCSELs using eigenmode expansion and perfectly matched layers,”Opt. Quantum Electron. 33, 327-341, 2001.

C. Vassallo,“1993-1995 Optical mode solvers,”

Page 104: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Opt. Quantum Electron. 29, 95-114, 1997.

W.-D. Sheng,“The scattering matrix method for quantum waveguides,”J. Phys.: Condens. Matter 9, 8369-8380, 1997.

L. Li,“Formulation and comparison of two recursive matrix algorithms formodeling layered diffraction gratings,”J. Opt. Soc. Am. A 13, 1024-1035, 1996.

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. deRidder, R. Stoffer, G. Klaasse, J. Petracek , P. Lalanne, J.-P.Hugonin, R. M. De La Rue,“Bragg waveguide grating as a 1D photonic bandgap structure:COST 268 modelling task,”Opt. Quantum Electron. 34, 455-470, 2002.

S. L. Lee, Y. Chung, L. A. Coldren, N. Dagli,“On Leaky Mode Approximations for Modal Expansion in MultilayerOpen Waveguides,”IEEE J. Quantum Electron. 31, 1790-1802, 1995.

Page 105: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

R. E. Smith, S. N. Houde-Walter,“Leaky guiding in nontransparent waveguides,” J. Opt. Soc. Amer. A12, 715-724, 1995.

P. Gerard, P. Benech, D. Khalil, R. Rimet, S. Tedjini,“Towards a full vectorial and modal technique for the analysis ofintegrated optics structures: the Radiation Spectrum Method(RSM),”Opt. Commun. 140, 128-145, 1997.

V. M. Schneider,“Analysis of passive optical structures with an adaptive set ofradiation modes,”Opt. Commun. 160, 230-234, 1999.

K. P. Fakhiri, P. Benech,“A new technique for the analysis of planar optical discontinuities:an iterative modal method,”Opt. Commun. 177, 233-243, 2000.

Page 106: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

P. Bienstman, R. Baets, “Advanced boundary conditions foreigenmode expansion models,”Opt. Quantum Electron. 34, 523-540, 2002.

G. R. Hadley,“Transparent boundary condition for beam propagation,”Opt. Lett. 16, 624-626, 1991.

J.-P. Berenger,“A Perfectly Matched Layer for the Absorption of ElectromagneticWaves,”J. Comp. Phys. 114, 185-200, 1994.

D. S. Katz, E. T. Thiele, A. Taflove,“Validation and Extension to Three Dimensions of the BerengerPML Absorbing Boundary Condition for FD-TD Meshes,”IEEE Microwave Guided Wave Lett. 4, 268-270, 1994.

W. C. Chew, W. H. Weedon,“A 3D Perfectly Matched Medium from Modified Maxwell’sEquations with Stretched Coordinates,”

Page 107: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

Microwave Opt. Technol. Lett. 7, 599-604, 1994.

Z. S. Sacks, D. M. Kingsland, R. Lee, J.-F. Lee,“A Perfectly Matched Anisotropic Absorber for Use as an AbsorbingBoundary Condition,”IEEE Trans. Antennas Propagat. 43, 1460-1463, 1995.

F. L. Teixeira, W. C. Chew,“Complex space approach to perfectly matched layers: a review andsome new developments,”Int. J. Numer. Model. 13, 441-445, 2000.

J. D. Joannopoulos, R. D. Meade, J. N. Winn,Photonic Crystals. Moldig the Flow of Light.Princeton University Press, Princeton, 1995.

J. Ctyroky, S. Helfert, R. Pregla,“Analysis of a deep waveguide Bragg grating,”Opt. Quantum Electron. 30, 343-358, 1998.

A. A. Oliner, S. T. Peng, T. I. Hsu, A. Sanchez,

Page 108: Modal expansion methods for modeling of photonic devicesphysics.fme.vutbr.cz/~jirka/Papers/mmp.pdf · Modal expansion methods for modeling of photonic devices Jiˇr´ı Petr´aˇcek

“Guidance and Leakage Properties of a Class of Open DielectricWaveguides: Part II – New Physical Effects,”IEEE Trans. Microwave Theory Tech. MTT-29, 855-869, 1981.

A. S. Sudbø,“Improved formulation of the film mode matching for mode fieldcalculations in dielectric waveguides,”J. Europ. Opt. Soc. 3, 381-388, 1994.

W. Wang, R. Wolfe, P. J. Anthony“Analysis of Magneto-Optic Nonreciprocal Phase Shift inAsymmetric Fibers for All-Fiber Isolators by Variational Vector-WaveMode-Matching Method,”J. Lightwave Technol. 14, 749-759, 1996.