MINIMAL SO (10) SPLITS SUPERSYMMETRY*

26
MINIMAL SO(10) SPLITS SUPERSYMMETRY* Ilja Doršner Institut Jožef Stefan”, Ljubljana September 11, 2008 *Borut Bajc, I.D. and Miha Nemevšek, arXiv:0809.1069.

description

MINIMAL SO (10) SPLITS SUPERSYMMETRY*. Ilja Doršner Institut “ Jožef Stefan”, Ljubljana September 11, 2008. * Borut Bajc, I.D. and Miha Nemevšek, arXiv:0809.1069. OUTLINE. THE MINIMAL SO (10) MODEL: MAIN FEATURES LOW SCALE SUPERSYMMETRY (SUSY) AND ν MASS SPLIT SUSY AND ν MASS - PowerPoint PPT Presentation

Transcript of MINIMAL SO (10) SPLITS SUPERSYMMETRY*

Page 1: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MINIMAL SO(10) SPLITS SUPERSYMMETRY*

Ilja DoršnerInstitut “Jožef Stefan”, Ljubljana

September 11, 2008

*Borut Bajc, I.D. and Miha Nemevšek, arXiv:0809.1069.

Page 2: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

OUTLINE

•THE MINIMAL SO(10) MODEL: MAIN FEATURES

•LOW SCALE SUPERSYMMETRY (SUSY) AND ν MASS

•SPLIT SUSY AND ν MASS

•EXPERIMENTAL SIGNATURES

•CONCLUSIONS

Page 3: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MINIMAL SUSY SO(10) ― MSG(rand)U(nified)T(heory)*

SUPERPOTENTIAL:

REPRESENTATIONS:

*T. E. Clark, T. K. Kuo and N. Nakagawa, Phys. Lett. B 115 (1982) 26; K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70 (1993) 2845; C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Lett. B 588 (2004) 196; …

(Important for fermion masses.)

(Important for unification.)

Page 4: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

PARAMETERS: (WY)

3 + 12

3 up quark masses

3 down quark masses

3 charged lepton masses

3 (2) neutral lepton masses

3 CKM angles + 1 CKM phase

3 (2) PMNS angles + 3 PMNS (0) phases

22 (17) 15vs.

Page 5: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

CONDITIONS*: …

RELEVANT PARAMETERS*:

tan β

0, MSUSY

RGEs: gauge coupling constants

RGEs: Yukawa couplings

*C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Lett. B 588 (2004) 196.

PARAMETERS: (WH)

Page 6: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MSSM MSGUT

MGUT ≈ 2 × 1016 GeV

102 GeV

MSUSY

MGUT (≡ M(X,Y))

102 GeV

MSUSY

UNIFICATION IN MINIMAL SO(10)

Page 7: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MSSM: GAUGE COUPLING UNIFICATION

1(MZ) = 0.016949 ± 0.000005

2(MZ) = 0.033816 ± 0.000027

3(MZ) = 0.1176 ± 0.0020

Page 8: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MSGUT: GAUGE COUPLING UNIFICATION*

?

*B. Bajc et al, hep-ph/0402122; C. S. Aulakh and S. K. Garg, hep-ph/0512224; S. Bertolini, T. Schwetz and M. Malinsky, hep-ph/0605006; …

Page 9: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

FERMION MASSES IN MINIMAL SO(10)*

OUR CONVENTION:

*B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, hep-ph/0511352.

Page 10: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

vR 2 ‹ΨD› 2/( )

vR

TYPE I SEESAW

ν ν

νi νj

(1,1,0)

spin 1/2

spin 0(Mn)ij νi νj ≡

‹ΨD› ‹ΨD›

Page 11: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

TYPE II SEESAW

vL

(1,3,1)

νi νj

( )ij vL

νi νj

Page 12: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

FERMION MASSES IN MINIMAL SO(10)*

*B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, hep-ph/0511352.

Page 13: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

TYPE II CONTRIBUTION TO ν MASS

b–τ UNIFICATION

PROTON DECAY (d = 6)

UPPER BOUND ON ν MASS FROM PROTON STABILITY!

Page 14: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

tan (MZ )

THE MZ DATA ARE FROM hep-ph/0607208 by I. D, P. P. Pérez and G. Rodrigo.

b AND τ MASSES IN GeV UNITS AT MGUT

mb

m

MSUSY = 1 TeV

b–τ UNIFICATION

mb-mτ ≈ 0.25 × 109 eV

(mν)33 ≈ 0.05 eV

FII (mb-mτ )

Page 15: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

PROTON DECAY (d = 6)THEORY (p → π0 e+):

EXPERIMENT:

Page 16: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

LOW SCALE SUSY AND ν MASS

Page 17: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

FITTING PROCEDURE

Page 18: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*
Page 19: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*
Page 20: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

: ―

IMPORTANT FINDINGS

:

Page 21: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

SPLIT SUSY* AND ν MASS

i) We maximize FII in order to have a viable neutrino scale.This fixes x, m (MGUT), α, α, λ and η.

RELEVANT STEPS:

ii) We check whether unification takes place by solving three equations for the running of gauge couplings for three unknowns ― gGUT, Mf and M½.

iii) We run masses of quarks and charged leptons and the CKM parameters to MGUT for a given tanβ and perform numerical fit that also includes fitting of neutrino mass ratio m2/m3 as well as solar and atmospheric angles.

*N. Arkani-Hamed and S. Dimopoulos, hep-ph/0405159; G. F. Giudice and A. Romanino, hep-ph/0406088.

Page 22: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

MGUT (≡ M(X,Y))

102 GeVM½

MSGUT

MGUT (≡ M(X,Y))

102 GeV

MSUSY

MSGUT

Mf

d=5 proton decay scale*

*T. Fukuyama et al, hep-ph/0406068; B. Dutta et al, 0712.1206 [hep-ph].

low SUSY split SUSY

Page 23: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

FIT RESULTS

Page 24: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*
Page 25: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

PROTON DECAY SIGNATURES*

ALL RELEVANT PHASES ARE DETERMINED FROM THE FIT!ALL RELEVANT MASSES ARE FOUND FROM UNIFICATION!

*P. Filevies Perez, hep-ph/0403286.

Page 26: MINIMAL  SO (10)  SPLITS SUPERSYMMETRY*

CONCLUSIONS

•Our results indicate that the minimal SO(10) with low scale SUSY fails to accommodate relevant neutrino mass scale.

•Split SUSY case not only generates viable ν scale but allows for consistent description of all known masses and mixing parameters in a particular region of parameter space.

•The model yields interesting signatures for the next generation of proton decay experiments and observable sPMNS

13 .