Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

28
Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    2

Transcript of Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Page 1: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Mini-course bifurcation theory

George van Voorn

Part two: equilibria of 2D systems

Page 2: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Two-dimensional systems

• Consider 2D ODE

α = bifurcation parameter(s)

Page 3: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Model analysis

• Different kinds of analysis for 2D ODE systems– Equilibria: determine type(s)– Transient behaviour– Long term behaviour

Page 4: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Equilibria: types

• Different types of equilibria• Stability

– Stable– Unstable– Saddle

• Convergence type– Node– Spiral (or focus)

Page 5: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Equilibria: nodes

Stable node Unstable node

Ws

Node has two (un)stable manifolds

Wu

Page 6: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Equilibria: saddle

Saddle point

Ws

Saddle has one stable & one unstable manifold

Wu

Page 7: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Equilibria: foci

Stable spiral Unstable spiral

Spiral has one (un)stable (complex) manifold

Ws Wu

Page 8: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Equilibria: determination

• How do we determine the type of equilibrium?

• Linearisation of point

• Eigenfunction

Page 9: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Jacobian matrix

• Linearisation of equilibrium in more than one dimension partial derivatives

Page 10: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Eigenfunction

• Determine eigenvalues (λ) and eigenvectors (v) from Jacobian

Of course there are two solutions for a 2D system

Page 11: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Eigenfunction

If λ < 0 stable, λ > 0 unstableIf two λ complex pair spiral

Page 12: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Determinant & trace

• Alternative in 2D to determine equilibrium type (much less computation)

Page 13: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Diagram

SaddleStable nodeStable spiralUnstable spiralUnstable node

Page 14: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

• 2D ODE Rosenzweig-MacArthur (1963)

R = intrinsic growth rateK = carrying capacityA/B = searching and handlingC = yieldD = death rate

Page 15: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

• System equilibria– E1 (0,0)

– E2 (K,0)

– E3 Non-trivial

Page 16: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

• Jacobian matrix

Substitute the point of interest, e.g. an equilibriumDetermine det(J) and tr(J)

Page 17: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

Result: stable node

Substitution E2

Page 18: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

Result: stable node, near spiral

Substitution E3

Page 19: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Example

Result: unstable spiral

Substitution E3

Page 20: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

One parameter diagram1 2 3

1. Stable node2. Stable node/focus3. Unstable focus

Page 21: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Isoclines

• Isoclines: one equation equal to zero

• Give information on system dynamics

• Example: RM model

Page 22: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Isoclines

Page 23: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Isoclines

Page 24: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Manifolds & orbits

• Manifolds: orbits starting like eigenvectors

• Give other information on system dynamics

• E.g. discrimination spiral or periodic solution (not possible with isoclines)

• Separatrices (unstable manifolds)

Page 25: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Isoclines & manifolds

Ws

Page 26: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Manifolds & orbits

D < 0 stable manifold E1 is separatrix

Ws WuE2

E3

E1 x

y

Page 27: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.

Continue

• In part three:– Bifurcations in 2D ODE systems– Global bifurcations

• In part four:– Demonstration: 3D RM model– Chaos

Page 28: Mini-course bifurcation theory George van Voorn Part two: equilibria of 2D systems.