Millimeter-Wave and Terahertz CMOS Design · 2016. 2. 17. · • Historically, wireless technology...

56
Millimeter-Wave and Terahertz CMOS Design Minoru Fujishima

Transcript of Millimeter-Wave and Terahertz CMOS Design · 2016. 2. 17. · • Historically, wireless technology...

  • Millimeter-Wave and Terahertz CMOS Design

    Minoru Fujishima

  • THz wave: Intermediate of radio wave and light

    What is mmW & THz? • Definition of millimeter wave (mmW)

    – 30GHz ~ 300GHz (wave length: 1mm ~ 10mm) • Definition of Terahertz (THz)

    – 100GHz ~ 10THz(wave length: 30μm ~ 3mm) – sometimes 300GHz ~ 3THz (=submmW)

    1km 1m 1mm 1um 1nm Wave Length

    Sub m

    mW

    Ultrared

    Visible light

    Ultraviolet

    X ray g ray

    Micro w

    ave

    UH

    F H

    F M

    F

    LF

    300kHz 300MHz 300GHz 300THz Frequency

    mm

    W

    2011/11/21 2 SSCS Distinguished Lecture

  • MOSFET Performance in THz Region

    ITRS 2010 fmax= 450GHz (2013) = 990GHz (2020)

    0

    5

    10

    15

    1.00E+11 1.00E+12

    65nm-CMOS

    2013

    2020

    Frequency [Hz] 100G 1T 250G 450G

    5

    0

    10

    15

    MS

    G /

    MA

    G [d

    B] MSG / MAG

    estimation

    MSG=7dB

    100G 180G 400G

    Matching Network Loss=1dB

    Matching Network Loss=1dB

    MSG=7dB

    Estimated Gain of Amplifier Gain= 5dB @ 100GHz (65nm) = 5dB @ 180GHz (2013) = 5dB @ 400GHz (2020)

    2011/11/21 3 SSCS Distinguished Lecture

  • Wireless Communication Trend

    After T. Nagatsuma (Osaka Univ), Doc.: IEEE 802.15-10-0149-01-0thz

    Year

    Spe

    ed (G

    bit/s

    )

    2011/11/21 4 SSCS Distinguished Lecture

    60 GHz

    802.11g 802.16e

    (WiMAX Mobile)

    802.11n

    802.16 (WiMAX Fixed)

    2000 2005 2010 2015 2020

    1000

    100

    10

    1

    0.1

    0.01

    0.001

    802.15.3c

    THz (InP)

    mmW (InP)

    LAN/ PAN

    FWA/ FPU

  • Power can be reduced utilizing wide frequency band

    MIMO-OFDM Multiple Input Multiple Output

    Orthogonal Frequency Division Multiplexing

    OFDM Orthogonal Frequency Division Multiplexing

    QAM Quadrature Amplitude

    Modulation

    QPSK Quadrature Phase-Shift

    Keying

    Strategies for Ultrahigh-Speed Wireless Communication

    Frequency band

    Po

    wer

    Co

    nsu

    mp

    tio

    n

    Large

    Small

    Narrow Wide

    BPSK Binary Phase-Shift

    Keying

    Tradeoff between power consumption and frequency band

    High-speed communication is realized with limited bandwidth in microwave.

    Green High Speed

    High Power High Speed

    ASK Amplitude-Shift

    Keying

    2011/11/21 5 SSCS Distinguished Lecture

  • Contents • mmW / THz CMOS Design

    • 60GHz HDMI Transceiver

    • 120 / 140GHz Dual Channel Receiver

    2011/11/21 6 SSCS Distinguished Lecture

  • Chip Development Process

    Measurement

    Device

    Circuit System

    2011/11/21 7 SSCS Distinguished Lecture

  • Three Development Tasks

    Measurement

    Device

    Circuit System

    2011/11/21 8 SSCS Distinguished Lecture

  • Three Development Layers

    Measurement

    Device

    Circuit System

    2011/11/21 9 SSCS Distinguished Lecture

  • SoC Design

    Measurement

    Circuit System

    Device outsource

    2011/11/21 10 SSCS Distinguished Lecture

  • Analog/RF Design

    Measurement

    Circuit System

    Device outsource

    2011/11/21 11 SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 12 SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 13 SSCS Distinguished Lecture

  • mmW Layout Issue

    FET

    Vgs Vgs

    Design without transmission line for analog/RF

    Design with transmission line for millimeter wave

    Vgs

    FET

    Vgs

    Modeled transmission line is used for interconnect.

    ・ ・

    2011/11/21 14 SSCS Distinguished Lecture

  • Bond-Based Design Use Device Tiles MOSFET Transmission Line Pad etc.

    Interface for tiles Transmission Line

    Device model including transmission line interface is necessary.

    No Parasitic Wire Connect No LPE is required

    2011/11/21 15 SSCS Distinguished Lecture

  • mmW Decoupling Issue

    Dedicated decoupling device for millimeter wave is required.

    circuit1 circuit2

    circuit3

    GND VDD GND

    Noise, coupling

    2011/11/21 16

    Decoupling capacitors have own parasitic impedance. Large C does not always work as a decoupling in millimeter wave.

    SSCS Distinguished Lecture

  • Millimeter-Wave Decoupling

    • A transmission line with ultralow characteristic impedance (0WTL) shields the ground impedance.

    Ground-impedance shield with

    zero-ohm TL

    Single-ended amplifier with zero-ohm TL

    Zin=0

    Parasitic ground

    impedance

    2011/11/21 17 SSCS Distinguished Lecture

  • Impedance of Short Stub

    TL Zin Ground

    Impedance Z0 , g

    Zgnd

    =

    if Z0 0 (0WTL)

    Zin Z0 (Zgnd+Z0)+(Zgnd-Z0)e-2gl

    (Zgnd+Z0)-(Zgnd-Z0)e-2gl

    0

    l

    2011/11/21 18 SSCS Distinguished Lecture

  • Characteristic Impedance of 0ΩTL

    2011/11/21 19

    40 80 0 120

    1

    0

    2 C

    hara

    cter

    istic

    im

    peda

    nce

    [Ω]

    Frequency [GHz]

    Measured results

    SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 20 SSCS Distinguished Lecture

  • Transmission Line Evaluation

    THRU (0µm)

    TL4 (80µm)

    TL6 (120µm)

    TL8 (160µm)

    TL9 (180µm)

    2011/11/21 21 SSCS Distinguished Lecture

  • Measurement Issues

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    1.E+07 1.E+10 2.E+10 3.E+10 4.E+10 5.E+10 6.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    THRU

    -1.2

    -1

    -0.8

    2.E+10 3.E+10 4.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    THRU

    The S21 should be… THRU > TL4 > TL6 > TL8 > TL9

    However, in this case… TL6 > TL4 > TL9 > TL8 > THRU

    S21 become positive !!

    After de-embedding…

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.E+07 1.E+10 2.E+10 3.E+10 4.E+10 5.E+10 6.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    2011/11/21 22 SSCS Distinguished Lecture

  • Caused by irreproducible probing!

    THRU

    TL4 TL6

    Probe positions were irreproducible.

    Length & contact resistance are fluctuating.

    (a) (b)

    (a) touch down

    (b) skate

    2011/11/21 23 SSCS Distinguished Lecture

  • Accurate Probing

    THRU

    TL4 TL6

    By utilizing scotch tape marker…

    2011/11/21 24 SSCS Distinguished Lecture

  • Measured Results

    The S21 is expected order THRU > TL4 > TL6 > TL8 > TL9

    S21 become normal

    After de-embedding… -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    1.E+07 1.E+10 2.E+10 3.E+10 4.E+10 5.E+10 6.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    THRU

    -1.2

    -1

    -0.8

    2.E+10 3.E+10 4.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    THRU

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    1.E+07 1.E+10 2.E+10 3.E+10 4.E+10 5.E+10 6.E+10

    S21

    [dB

    ]

    Frequency [Hz]

    TL9

    TL8

    TL6

    TL4

    2011/11/21 25 SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 26 SSCS Distinguished Lecture

  • Admittance Comparison

    0

    5

    10

    15

    Im {y

    11} [

    mS

    ]

    -5

    -4

    -3

    -2

    -1

    0

    Im {y

    12} [

    mS

    ]

    -16

    -12

    -8

    -4

    0 0 0.5 1

    Im {y

    21} [

    mS

    ]

    Vgs [V]

    0

    4

    8

    12

    16

    0 0.5 1

    Im {y

    22} [

    mS

    ]

    Vgs [V]

    20GHz

    60GHz

    100GHz

    20GHz

    60GHz

    100GHz

    20GHz

    60GHz

    100GHz Measurement Measurement

    Measurement Measurement

    100GHz

    60GHz

    20GHz

    2011/11/21 27 SSCS Distinguished Lecture

  • Verification using Amplifier

    65nm-CMOS Technology

    Simplified Circuit Diagram

    in out

    bias vdd

    ground

    ground ground

    ground

    ground

    in out

    W/L = 32μm/44nm

    71.1μm 31.2μm

    100.

    6μm

    101.5μm 55.8μm

    73.7

    μm

    75fF

    bias

    vdd

    Y-wrapper model of MOSFET

    Transmission lines

    Capacitor

    Tiles

    2011/11/21 28 SSCS Distinguished Lecture

  • Measured and Simulated Results

    -40

    -30

    -20

    -10

    0

    10

    -40

    -30

    -20

    -10

    0

    10

    20 60 100 Frequency [GHz]

    20 60 100 Frequency [GHz]

    S-p

    aram

    eter

    [dB]

    S

    -par

    amet

    er [d

    B]

    bias = 0.0V vdd = 1.1V

    bias = 0.6V vdd = 1.1V

    bias = 0.8V vdd = 1.1V

    bias = 1.1V vdd = 1.1V

    S11

    S21

    S12

    S22

    2011/11/21 29 SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 30 SSCS Distinguished Lecture

  • Wideband 140GHz CMOS Amp.

    M1

    M2 M3

    126m

    112m

    21m

    41m

    63m 17m

    126m

    56m

    17m 23m

    56m

    42m

    72fFL/W of MOSFET = 65nm / 22.6mm

    Transmission line unit : m

    M4

    40m

    27m

    26m

    M5

    23m

    60m

    27m

    M6

    17m

    26m

    27m

    M7

    60m

    410m

    174m

    Input Output

    2011/11/21 31 SSCS Distinguished Lecture

  • Wideband LNA

    Matching

    Network

    Low group delay

    variation

    freq.

    ・・・・・Matching

    Network

    Matching

    NetworkMatching

    Network

    Matching

    Network

    Matching

    Network

    Gai

    n

    Wide

    freq.

    1stageGro

    up D

    elay

    (Total) n-stages

    2stages

    ・・・

    1stage2stages

    ・・・

    3stages 3stages

    (Total) n-stages

    Center frequencies in matching networks are distributed to flatten frequency responses of power gain and group delay.

    Six-stage amplifier

    2011/11/21 32 SSCS Distinguished Lecture

  • Measurement Results

    -20

    -10

    0

    10

    20

    Frequency [GHz]

    Gai

    n [d

    B]

    Gro

    up D

    elay

    [ps

    ]

    01020304050

    9.7

    9.8

    9.9

    10.0

    130 134 142Frequency [GHz]

    Gai

    n [d

    B]

    12GHz

    0.1dB

    138 146

    100 120 140 160 180

    Freq.

    [GHz]

    0.1dB-BW

    [GHz]

    3dB-BW

    [GHz]

    Peak Gain

    [dB]

    GD @3dB-BW

    [ps]

    PDC [mW]

    Technology

    [nm]

    136.1 12 27.6 9.9 46.2±13.1 57.1 65

    Specification Summary

    Frequency Characteristics

    2011/11/21 33 SSCS Distinguished Lecture

  • Millimeter-Wave Design

    Measurement

    Device

    Circuit System

    2011/11/21 34 SSCS Distinguished Lecture

  • Promising Application: Indoor PAN

    1. Bit rates unmatched by any other wireless technologies are offered. • Historically, wireless technology

    that offers more throughput (even at short ranges) is interested.

    2. Costs are comparable to existing technologies • The market wants more for the

    same cost. Going 10x faster captures the market, but charging 10x more is not allowed.

    3. Power/bit is less than existing technology • Going 10x faster is done with the

    same battery used by the same technology.

    Rick Roberts (Intel), 802.15 THz IG THz will be exciting if and when …

    Distance: LOS ~1 meter Bit Rates: 20 to 50+ Gbps Cost: comparable to Bluetooth Power consumption: comparable to Bluetooth

    So what might make a winning solution?

    2011/11/21 35 SSCS Distinguished Lecture

  • Contents • mmW / THz CMOS Design

    • 60GHz HDMI Transceiver

    • 120 / 140GHz Dual Channel Receiver

    2011/11/21 36 SSCS Distinguished Lecture

  • Wideband 60GHz Regulations

    North America (57.05~64)

    Japan (59~66)

    Korea (57~64)

    57 58 59 60 61 62 63 64 65 66 Frequency [GHz]

    Europe (57~66)

    0 f

    License free BW=7GHz

    Pout=+10dBm

    2011/11/21 37 SSCS Distinguished Lecture

  • Target Application: Mobile Streaming

    TX Data Power

    TV set or projector

    RX Data

    Mobile device

    ANT ANT

    Mobile streaming application for mmw.

    TX Power consumption should be reduced for mobile streaming applications.

    2011/11/21 38 SSCS Distinguished Lecture

    http://img.kakaku.com/images/productimage/fullscale/K0000080324.jpghttp://img.kakaku.com/images/productimage/fullscale/K0000053450.jpg

  • mmWave Simplex Communication

    In TX mmw

    repeater

    Out RX mmw

    repeater

    High-speed streaming

    In Out

    ISM transceiver

    In Out

    ISM transceiver

    Low-speed control signal

    Low-frequency ISM band

    Millimeter-wave band

    Simplex Communication

    Duplex Communication

    2011/11/21 39 SSCS Distinguished Lecture

  • Repeater for Low Power

    1 0 1 1

    t

    Vin

    Input waveform

    1 0 1 1

    t

    Vout

    Output waveform

    Digital data transfered from baseband to mmWave.

    IN OUT TX

    mmw repeater

    Simple architecture Realizes lower power.

    Tx “Repeater”

    Rx “Repeater”

    1 0 1 1

    t

    Vout

    Output waveform

    1 0 1 1

    t

    Vin

    Input waveform

    OUT IN RX

    mmw repeater

    Digital data transfered from mmWave to baseband.

    2011/11/21 40 SSCS Distinguished Lecture

  • Low-Power 3CH TX and RX Repeaters ON/OFF

    CH1

    ASK mod

    FLL

    VCO1 VGA LNA

    MIX

    VCO2 Demod

    CH1 f1 f1

    CH2

    ASK mod

    FLL

    VCO1 VGA LNA

    MIX

    VCO2 Demod

    CH2 f2 f2

    CH3

    TX RX

    ASK mod

    FLL

    VCO1 VGA LNA

    MIX

    VCO2 Demod

    CH3 f3 f3

    CMOS CMOS 2011/11/21 41 SSCS Distinguished Lecture

  • Chip and Module Photographs

    CMOS chip

    patch antenna

    substrate

    Bias, control and digital data.

    3 Channel 60GHz Module

    transmission line

    substrate

    CH

    1C

    H2

    CH

    3

    4cm

    7cm

    CH1 CH2

    CH3

    5mm

    2.7m

    m

    2.3m

    m TX Chip

    CH1 CH2

    CH3

    RX Chip

    2011/11/21 42 SSCS Distinguished Lecture

  • Wireless Communication Measurement

    RX Module

    TV

    TX module

    Blu-ray player

    1.5, 1.9133 / 206-47dBm62.6Gbps90nm CMOS

    [5]ISSCC08

    6.4, 5.8800 / 527NF=5-6.7dB17630Mbps130nm SiGe

    [4]ISSCC06

    18W / 18W

    183 / 103

    173 / 189

    170 /138

    51 / 116

    PowerConsumption

    (TX / RX)[mW]

    6.88(TX+RX)NA10.664Gbps

    90nm CMOS

    [7]ISSCC09

    0.43, 0.68NA72.5Gbps90nm CMOS

    [8] ISSCC09

    Chip set solution

    2.63, 3.83

    0.85, 1.92

    Core areaTX, RX[mm2]

    -65dBm

    NF=9dB

    -52dBm

    RX Sensitivity orNoise Figure

    27NANot

    available[3]

    2009

    57Gbps90nm CMOS

    [6]ISSCC08

    51Gbps90nm CMOS

    This Work

    TX RF Power

    [dBm]

    Data RateTechnology

    1.5, 1.9133 / 206-47dBm62.6Gbps90nm CMOS

    [5]ISSCC08

    6.4, 5.8800 / 527NF=5-6.7dB17630Mbps130nm SiGe

    [4]ISSCC06

    18W / 18W

    183 / 103

    173 / 189

    170 /138

    51 / 116

    PowerConsumption

    (TX / RX)[mW]

    6.88(TX+RX)NA10.664Gbps

    90nm CMOS

    [7]ISSCC09

    0.43, 0.68NA72.5Gbps90nm CMOS

    [8] ISSCC09

    Chip set solution

    2.63, 3.83

    0.85, 1.92

    Core areaTX, RX[mm2]

    -65dBm

    NF=9dB

    -52dBm

    RX Sensitivity orNoise Figure

    27NANot

    available[3]

    2009

    57Gbps90nm CMOS

    [6]ISSCC08

    51Gbps90nm CMOS

    This Work

    TX RF Power

    [dBm]

    Data RateTechnology

    System Spec.

    2011/11/21 43 SSCS Distinguished Lecture

  • Contents • mmW / THz CMOS Design

    • 60GHz HDMI Transceiver

    • 120 / 140GHz Dual Channel Receiver

    2011/11/21 44 SSCS Distinguished Lecture

  • Worldwide Radio Wave Allocation

    REGION 1

    REGION 2

    REGION 3 REGION 3

    160º 140º 120º 100º 80º 60º 40º 20º 0º 20º 40º 60º 80º 100º 120º 140º 160º 180º 170º

    170º

    160º 140º 120º 100º 80º 60º 40º 20º 0º 20º 40º 60º 80º 100º 120º 140º 160º 180º

    170º

    170º

    75º

    60º

    40º 30º

    20º

    20º 30º 40º

    60º

    75º

    60º

    40º 30º 20º

    20º 30º 40º

    60º A

    A B

    B C

    C

    2011/11/21 45 SSCS Distinguished Lecture

  • Frequency Allocation in Japan (region 3)

    2011/11/21 46

    86 92

    100 102

    109.5 111.8

    114.25 116

    148.5 151.5

    164 167

    182 185 190

    191.8 200

    209

    226 231.5

    250 252

    Forbidden band

    http://www.tele.soumu.go.jp/j/adm/freq/search/myuse/use/

    Wireless communication may be available when the forbidden bands are avoided.

    Rad

    io

    Astr

    onom

    y

    Rad

    io

    Astr

    onom

    y

    Amature

    SSCS Distinguished Lecture

  • Frequency Allocation in Region 1 & 2

    2011/11/21 47

    Forbidden bands exclusively used by “Radio Astronomy”, “Earth Exploration Satellite”, “Space Research” are same as those in region 1.

    Frequency allocation in UK (region 1)

    Forbidden bands exclusively used by “Radio Astronomy”, “Earth Exploration Satellite”, “Space Research” are different from those in region 1.

    Frequency allocation in USA(region 2)

    SSCS Distinguished Lecture

  • 4 1 2

    Channelization Plan for THz Channel Number

    Low Freq. (GHz)

    Center Freq. (GHz)

    High Freq. (GHz)

    3dB BW (GHz)

    Roll-Off Factor

    1 116.589 124.089 131.589 12 0.25 2 132.100 139.600 147.100 12 0.25 3 147.611 155.111 162.611 12 0.25 4 167.000 174.500 182.000 12 0.25

    110 120 130 140 150 160 170 180 190 fGHz

    J,EU

    9 GHz

    15 GHz 12 GHz

    J,EU J,EU J,EU

    USA

    3

    D band G band

    Forbidden band

    region 1&3

    region 2

    When channels are allocated in D and G bands, three channels are available in worldwide as in 60GHz bands (IEEE 802.15.3c). cf: 60GHz-band 2GHz/ch

    D-band+ 15GHz/ch 2011/11/21 48 SSCS Distinguished Lecture

  • Dual-Channel ASK Receiver

    LNA

    LA Output : Digital Signal

    1 1 0 1 0

    Input :ASK Signal (120GHz)

    RX (120GHz)

    DET

    1 1 0 1 0

    LNA

    LA Output : Digital Signal

    DET

    1 0 0 1 0

    RX (140GHz)

    1 0 0 1 0

    f 140GHz

    f 120GHz

    Input :ASK Signal (140GHz)

    DCOC

    DCOC

    Data Rate : fdata [bps]

    2 fdata

    2 fdata

    Channel Selection

    Channel Selection is required for receivers.

    2011/11/21 49 SSCS Distinguished Lecture

  • Channel Selection using LNA

    Frequency

    Desired Channel

    Undesired Channel

    120-GHz LNA 5 stage cascaded amplifier

    140-GHz LNA 6 stage cascaded amplifier

    Cascode amplifier

    Common source amplifier

    Cascode amplifier : Stability Common-source amplifier : High gain Matching frequencies are different : Wideband Gain Flatness

    Wideband and high-gain properties are required in

    desired channel.

    Low-gain property is required for channel

    selection in undesired channel.

    2011/11/21 50 SSCS Distinguished Lecture

  • Chip micrograph

    65nm CMOS Technology Supply Voltage: 1.2V Power Consumption: 85.7mW (120GHz-RX) 111.7 mW (140GHz-RX)

    2011/11/21 51 SSCS Distinguished Lecture

  • Frequency Response of LNA

    Frequency [GHz]

    BE

    R

    120-GHz RX 140-GHz RX

    Frequency [GHz]

    Gai

    n [d

    B]

    Gain bandwidth of 140-GHz LNA is too wide. Channel selection is degraded.

    Measured BER Measured gain of LNA

    2011/11/21 52 SSCS Distinguished Lecture

  • Wireless Measurement

    Distance [mm]

    BER

    Pout@TX-ANT: -7.8 dBm (120GHz) -7.2 dBm (140 GHz) 1Gbps 27-1 PRBS

    x12

    25dBi

    25dBi

    2011/11/21 53 SSCS Distinguished Lecture

  • Benchmark Result

    TechnologyFrequency

    [GHz]# of

    Channel

    PowerConsumption

    [mW]BER

    MaximumData Rate

    [Gbps]

    CommunicationDistance [m]

    [2] InP-HEMT 120 Single 750 1.00E-12 10 200

    [3]SiGe

    BiCMOS140 Single 1500 (*) N/A 4 1.15

    [4]65nmCMOS

    140 Single N/A N/A N/A N/A

    [5]SiGe

    BiCMOS160 Single 1473 N/A N/A N/A

    [6]65nmCMOS

    120 Single 80.9 (**) 1.00E-09 9 N/A

    Thiswork

    65nmCMOS

    120/140

    Dual85.7 (120GHz)111.7 (140GHz)

    1.00E-113.0 (120GHz)3.6 (140GHz)

    0.3 (120GHz)0.4 (140GHz)

    (*) Power consumption of transmitter is included

    (**) Low-noise amplifier is not included

    Required energy per bit : 29pJ/bit (120GHz-RX), 31pJ/bit (140GHz-RX)

    2011/11/21 54 SSCS Distinguished Lecture

  • Distance: LOS ~1 meter Bit Rates: 20 to 50+ Gbps Cost: comparable to Bluetooth Power consumption: comparable to Bluetooth

    Promising Application: Indoor PAN Rick Roberts (Intel)

    Towards 10Gbps will become

    OK

    CMOS possibility for THz is infinite.

    Winning Solution

    will become

    2011/11/21 55 SSCS Distinguished Lecture

  • Acknowledgements • This study was partially supported by The Semiconductor

    Technology Academic Research Center (STARC), the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Extremely Low Power (ELP) project supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO).

    2011/11/21 56 SSCS Distinguished Lecture