MICE & nuSTORM

30
MICE & nuSTORM V. Blackmore University of Oxford [email protected] Neutrino Oscillation Workshop September 13 th , 2014 1/30 V. Blackmore: MICE & nuSTORM 13/09/14 &

description

1/30. V. Blackmore: MICE & nuSTORM. 13/09/14. &. MICE & nuSTORM. V. Blackmore University of Oxford [email protected] Neutrino Oscillation Workshop September 13 th , 2014. 2/30. V. Blackmore: MICE & nuSTORM. 13/09/14. Talk Overview. Motivation Why do we need cooling? - PowerPoint PPT Presentation

Transcript of MICE & nuSTORM

Page 1: MICE &  nuSTORM

MICE & nuSTORM

V. BlackmoreUniversity of [email protected]

Neutrino Oscillation WorkshopSeptember 13th, 2014

1/30 V. Blackmore: MICE & nuSTORM 13/09/14

&

Page 2: MICE &  nuSTORM

Talk Overview

• Motivation– Why do we need cooling?

• The anatomy of MICE– Progress towards Steps IV and V*

• Muon beams for the busy physicist– nuSTORM• -nucleon scattering cross-sections• Sterile searches• Contributions to future facilities

2/30 V. Blackmore: MICE & nuSTORM 13/09/14

*comments later

Page 3: MICE &  nuSTORM

A Machine for CPV Discovery

[1] CKMfitter Collaboration, 2014[2] P. Coloma, P. Huber, J. Kopp & W. Winter, 2012

3/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 4: MICE &  nuSTORM

Neutrino Factory

𝜋

Source Oscillation Detection

𝜇−

𝜈𝜇

𝜈𝑒

𝜈𝑒

𝜈𝜇

𝑒−

𝜇−

𝜇+¿¿

𝑒+¿ ¿

𝜈𝜇

𝜈𝑒

CC

CC

CC

CC

≈50%

≈50%

4/30 V. Blackmore: MICE & nuSTORM 13/09/14

Prot

on d

river

(lina

c op

tion)

Targ

et

Dec

ay C

hann

el

Bunc

her

Phas

e Ro

tatio

n

Cool

ing

to 0

.8 G

eV

0.8—

2.8

GeV

2.8—

10 G

eV

Muon decay ring

562 m𝜈

Cartoon based on IDS-NF design

Front End Muon Source Acceleration Decay Ring

Also available to use as a ‘superbeam’

Page 5: MICE &  nuSTORM

Muon Cooling

𝑥

𝑝𝑥

𝜇

Liouville’s theorem conserves phase space

Area emittance,

Accelerator only accepts in this area

Reduce by defying Lioville’s theorem,• Requires a non-conservative force• Muon lifetime limits options• Ionisation cooling is the solution

5/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 6: MICE &  nuSTORM

Sustainable Ionisation Cooling

𝑑𝜀𝑑𝑠

≅−𝜀𝑛𝛽2𝐸 ⟨ 𝑑𝐸𝑑𝑋 ⟩+ 𝛽𝑡 (13.6  MeV)2

2 𝛽3𝐸𝑚𝜇 𝑋 0

Multiple scattering

Ionisation Cooling

Measure a change in emittance

6/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 7: MICE &  nuSTORM

MICEMuon Ionisation Cooling Experiment

• Goal: Demonstration of sustainable ionisation cooling (Step V)• Progress: Measurements of material properties and their influence

on cooling (Step IV)

7/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 8: MICE &  nuSTORM

1. Measure beam in Upstream Spectrometer Solenoid• 4T solenoid field• 5 SciFi tracker planes• Determine

𝜇

(mm)

(T)

(mm

) (MeV/)

0 2000 4000-4000 -2000

6.0

5.4

5.6

5.8

204

200

196

192

02

4

-2

-4

1600

1400

800

400

(mm

) beam and PID upstream MICE

Step V

8/30

Page 9: MICE &  nuSTORM

2. Reduce momentum vector in 1st absorber (LH2 or LiH). • Maximal reduction at small • Reduces

𝜇

(mm)

(T)

(mm

) (MeV/)

0 2000 4000-4000 -2000

6.0

5.4

5.6

5.8

204

200

196

192

02

4

-2

-4

1600

1400

800

400

(mm

) beam and PID upstream MICE

Step V

9/30

Page 10: MICE &  nuSTORM

3. Restore longitudinal momentum in RF cavities• remains constant• Sustainable cooling

𝜇

(mm)

(T)

(mm

) (MeV/)

0 2000 4000-4000 -2000

6.0

5.4

5.6

5.8

204

200

196

192

02

4

-2

-4

1600

1400

800

400

(mm

) beam and PID upstream MICE

Step V

10/30

Page 11: MICE &  nuSTORM

4. Reduce momentum vector in 2nd absorber (LH2 or LiH). • Maximal reduction at small • Reduces

𝜇

(mm)

(T)

(mm

) (MeV/)

0 2000 4000-4000 -2000

6.0

5.4

5.6

5.8

204

200

196

192

02

4

-2

-4

1600

1400

800

400

(mm

) beam and PID upstream MICE

Step V

11/30

Page 12: MICE &  nuSTORM

5. Measure beam in Downstream Spectrometer Solenoid• 4T solenoid field• 5 SciFi tracker planes• Determine final

𝜇

(mm)

(T)

(mm

) (MeV/)

0 2000 4000-4000 -2000

6.0

5.4

5.6

5.8

204

200

196

192

02

4

-2

-4

1600

1400

800

400

(mm

) beam and PID upstream MICE

Step V

12/30

Page 13: MICE &  nuSTORM

Progress: Step IVMeasurements of material properties and their influence on cooling

1. Characterise input beam [3]

2. Understand effect of material on beam emittance• No RF, 1 absorber module

3. Understand sustainable ionisation cooling • With RF, 2 absorber modules

2015

2017

𝑡

Entering final stages of construction, data-taking to begin early 2015

13/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 14: MICE &  nuSTORM

14/30

Page 15: MICE &  nuSTORM

MICE SummaryStep IV Step V*

Study of properties that determine cooling performance

Material properties of LH2 and LiH Yes LH2 or LiH

Observation of reduction

Demonstration of sustainable ionisation cooling

Observation of reduction with re-acceleration

No Yes

Observation of reduction and evolution

No Yes

Observation of reduction & and angular momentum evolution

No Yes

MICE RF Cavity at Fermilab

15/30 V. Blackmore: MICE & nuSTORM 13/09/14

* Recent DOE review of MAP/MICE recommended a demonstration of sustainable ionisation cooling by 2017. The collaboration is evaluating the options by which this can be achieved, including a simplified “Step ” configuration

Page 16: MICE &  nuSTORM

p p

n

170 m

Muon Decay Ring Neutrino beamTarget m

What does the impatient physicist do?

1 Simplify 2 Skip 3 Shrink

16/30 V. Blackmore: MICE & nuSTORM 13/09/14

Prot

on d

river

(lina

c op

tion)

Targ

et

Dec

ay C

hann

el

Bunc

her

Phas

e Ro

tatio

n

Cool

ing

to 0

.8 G

eV

0.8—

2.8

GeV

2.8—

10 G

eV

Muon decay ring

562 m𝜈

Cartoon based on IDS-NF design

Front End Muon Source Acceleration Decay Ring

Page 17: MICE &  nuSTORM

nuSTORM from STORed Muons

[4] CERN North Area

17/30

Page 18: MICE &  nuSTORM

nuSTORM

• Delivers beams of from the decay of 3.8 GeV stored • Known flavour composition and <1% neutrino flux precision• Precise CP-conjugate beams from storing and • Can access all of these channels with % or better accuracy:

𝜇−→𝑒−𝜈𝑒𝜈𝜇𝛾→ (1.4±0.4 )%

𝜇−→𝑒−𝜈𝑒𝜈𝜇𝑒+¿ 𝑒−→(3.4 ±0.4 )× 10− 5¿

p p

n

170 m

Muon Decay Ring Neutrino beamTarget m

18/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 19: MICE &  nuSTORM

The nuSTORM Triangle

NF/HEP muon accelerator proving ground

Definitive measurement of sterile neutrinos

Precision cross-section measurements

19/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 20: MICE &  nuSTORM

The nuSTORM Triangle

NF/HEP muon accelerator proving ground

Definitive measurement of sterile neutrinos

Precision cross-section measurements

20/30 V. Blackmore: MICE & STORM 13/09/14

Page 21: MICE &  nuSTORM

cross-sections at nuSTORM

• Negligible cross-section measurements at accelerator energy regimes

• Significant differences between and cross-sections below 1GeV

• cross-sections are essential for CP sensitivity in appearance experiments

[6] P. Huber, M. Mezzetto, T. Schwetz

21/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 22: MICE &  nuSTORM

cross-sections at nuSTORM

• Only nuSTORM can provide 1% level of precision– Intense source– Well known fluxes– sources– and

[6] P. Huber, M. Mezzetto, T. Schwetz

22/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 23: MICE &  nuSTORM

Performance with nuSTORM

Without cross-section measurements from

nuSTORM

[2] P. Coloma, P. Huber, J. Kopp & W. Winter, 2012

With cross-section measurements from

nuSTORM

Superbeams close in on CKM-level precision

23/30

Page 24: MICE &  nuSTORM

The nuSTORM Triangle

NF/HEP muon accelerator proving ground

Definitive measurement of sterile neutrinos

Precision cross-section measurements

24/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 25: MICE &  nuSTORM

Neutrino oscillations at nuSTORM25/30 V. Blackmore: MICE & nuSTORM 13/09/14

From J. Spitz, “Searches for Sterile Neutrino Mixing”, nuFACT 2014

Page 26: MICE &  nuSTORM

Neutrino oscillations at nuSTORM

Far Detector @ 2km

[5] The nuSTORM collaboration

• “Wrong sign muon” oscillation signal• Requires magnetised detector

• CPT conjugate of LSND• Sensitive to current best fit to at level

26/30 V. Blackmore: MICE & nuSTORM 13/09/14

[4] The nuSTORM collaboration

Page 27: MICE &  nuSTORM

The nuSTORM Triangle

NF/HEP muon accelerator proving ground

Definitive measurement of sterile neutrinos

Precision cross-section measurements

27/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 28: MICE &  nuSTORM

Muon Proving Ground

p p

n

170 m

Muon Decay Ring Neutrino beamTarget m

Muon Proving Ground

1 Physics! 2 Physics! 3 Physics!

28/30 V. Blackmore: MICE & nuSTORM 13/09/14

Prot

on d

river

(lina

c op

tion)

Targ

et

Dec

ay C

hann

el

Bunc

her

Phas

e Ro

tatio

n

Cool

ing

to 0

.8 G

eV

0.8—

2.8

GeV

2.8—

10 G

eV

Muon decay ring

562 m𝜈

Cartoon based on IDS-NF design

Front End Muon Source Acceleration Decay Ring

Page 29: MICE &  nuSTORM

Summary

• Muon-based neutrino beams are essential for precision measurement of CP.

• High-energy muon sources require a demonstration of sustainable ionisation cooling (MICE)– Influence of material parameters: 2015– Sustainable cooling: 2017

• nuSTORM requires no cooling and uses existing technology – could be built today.– Supports future neutrino oscillation programs by providing

precision measurements of -N cross sections (plus )– level sensitivity to sterile – Large step forward towards muon accelerators as a powerful new

tool for particle physics

29/30 V. Blackmore: MICE & nuSTORM 13/09/14

Page 30: MICE &  nuSTORM

References[1] CKMfitter Collaboration, Preliminary results as of Winter 2014 (Moriond conference)[2] P. Coloma, P. Huber, J. Kopp & W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large , arXiv:1209.5973[3] The MICE Collaboration, Characterisation of the muon beams for the Muon Ionisation Cooling Experiment, EPJC, DOI: 10.1140/epjc/s10052-013-2582-8[4] The nuSTORM Collaboration, Neutrinos from Stored Muons, nuSTORM, Expression of Interest to CERN, arXiv:1305.1419, Proposal to Fermilab, arXiv:1308.6822[5] D. Adey et al (the nuSTORM collaboration), Phys. Rev. D 89, 071301(R), Light sterile neutrino sensitivity at the nuSTORM facility (arXiv: 1402.5250)[6] P. Huber, M. Mezzetto, T. Schwetz, On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments, arXiv:0711.2950

30/30 V. Blackmore: MICE & nuSTORM 13/09/14