Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A....

11
Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010 Any hydrocarbon or heterocycle with 4n+2 electrons in a fully conjugated cyclic π system is considered aromatic. General characteristics of aromatic compounds: - chemical behavior (electrophilic substitution vs addition, resistance to oxidation) - structural characteristics (bond length equalization) - energetic profile (resonance energy) - magnetic properties (ring current effects-downfield shifts of peripheral protons) Pure&Appl. Chem. 1996, 68, 209 Why are aromatic compounds desirable building blocks? - ubiquitous - very stable (many are crystalline) - easy to functionalize - aromaticity can be view as masked functionality Available methods for "controlled" dearomatization: - Enzymatic - Photochemical / Thermal (concerted) - Radical - Transition-metal mediated - Nucleophilic ------------------------------------------------------------------------------------------- - Oxydative (polyvalent iodine mediated) - Reductive (Birch reduction/reductive alkylation; cat hydrogenation) Dearomatization under enzymatic conditions R P 450 O R O - O H H H R R NIH shift OH R epoxide hydrase R OH OH GSH S-transferase OH SR' R glutathione conjugate The carcenogenicity of polyaromatic compounds might be due to reactive intermediates generated upon dearomatization. For polyaromatic hydrocarbons, oxidation occurs primarily in the K-region. Among the oxidized products, epoxide-diols are particularly prone to nucleophilic ring-opening by DNA. O HO OH O Acc. Chem. Res., 1981, 14, 218 on heme oxygenases Chem. Rev., 1996, 96, 2841 on arene oxides Science, 1974, 185, 573 TFDO -20 °C, 8 min 96% O TFDO -20 °C, 30 min 90% O O TFDO, freon 0 °C, 6 h 35% CHO CHO Tet. Lett., 1990, 31, 6097 muconic aldehyde Other reagents for direct epoxidation of polycyclic aromatics: DMDO J. Am. Chem. Soc., 1984, 106, 2462 mCPBA Angew. Chem. Int. Ed., 1977, 16, 171 Mn(TDCPP)Cl, H 2 O 2 Chem. Commun., 2004, 608 NaOCl, Na 2 HPO 4 J. Am. Chem. Soc. 1984, 106, 2463 OH OH O

Transcript of Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A....

Page 1: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

Any hydrocarbon or heterocycle with 4n+2 electrons in a fully conjugated cyclic πsystem is considered aromatic. General characteristics of aromatic compounds: - chemical behavior (electrophilic substitution vs addition, resistance to oxidation) - structural characteristics (bond length equalization) - energetic profile (resonance energy) - magnetic properties (ring current effects-downfield shifts of peripheral protons) Pure&Appl. Chem. 1996, 68, 209

Why are aromatic compounds desirable building blocks? - ubiquitous - very stable (many are crystalline) - easy to functionalize - aromaticity can be view as masked functionality

Available methods for "controlled" dearomatization: - Enzymatic - Photochemical / Thermal (concerted) - Radical - Transition-metal mediated - Nucleophilic------------------------------------------------------------------------------------------- - Oxydative (polyvalent iodine mediated) - Reductive (Birch reduction/reductive alkylation; cat hydrogenation)

Dearomatization under enzymatic conditions

RP450 OR

O- O

H

H

H

R R

NIH shift

OHR

epoxidehydrase

R

OH

OH

G

SH

S-transfe

rase

OH

SR'R

glutathioneconjugate

The carcenogenicity of polyaromatic compounds might be due to reactive intermediates generated upon dearomatization. For polyaromatic hydrocarbons, oxidation occurs primarily in the K-region. Among the oxidized products, epoxide-diols are particularly prone to nucleophilic ring-opening by DNA.

O

HO

OHO

Acc. Chem. Res., 1981, 14, 218

on heme oxygenases Chem. Rev., 1996, 96, 2841on arene oxides Science, 1974, 185, 573

TFDO-20 °C, 8 min

96%

O

TFDO-20 °C, 30 min

90%

O

O

TFDO, freon 0 °C, 6 h

35%

CHO

CHO

Tet. Lett., 1990, 31, 6097

muconicaldehyde

Other reagents for direct epoxidation of polycyclic aromatics: DMDO J. Am. Chem. Soc., 1984, 106, 2462 mCPBA Angew. Chem. Int. Ed., 1977, 16, 171 Mn(TDCPP)Cl, H2O2 Chem. Commun., 2004, 608 NaOCl, Na2HPO4 J. Am. Chem. Soc. 1984, 106, 2463

OH

OH

O

Page 2: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

O

CO2tBu

+HN

N

O

O

SS

R Me

R = C6H4OMe-p

Triton-BDMSO

CO2tBu

N N

O

O

SS

RMe

OH66%

N N

O

O

SS

RMe

OH

Cl

BnO Cl

PhLi, THF

N N

OHO

O

Me

OBn

SS

R

45%

N N

OHO

O

Me

OH

SS

gliotoxinJ. Am. Chem. Soc., 1976, 98, 6723

For a biosynthetic proposal involving a benzene oxide: J. Org. Chem., 1980, 45, 3149

OBz

O

(5 steps from benzoic acid)

O2, hematoporphyrin

60%OO

O

OBz

P(OEt)3benzene

88%

OBz

O

O

10% AcOH THF

OBz

OH

HO

O

21%

+

OBz

OH

OH

HOHO

21%

+

OBz

OH

OH

O

32%

Ac2O

OBz

OAc

OAc

O

senepoxide

J. Am. Chem. Soc., 1978, 100, 6483

Br

Pseudomonas putida

Br

OH

OH99% ee

(Aldrich, $53/g)

For an extensive review on cyclohexane epoxide natural products Chem. Rev., 2004, 104, 2857Also, see Baran Lab GM Shikimic Acid, Ambhaikar, 2005. For more on biocatalysis, see Baran Lab GM Biocatalysis, Gulder, 2009

For an extensive list of substrates and applications in total synthesis (conduritols, inositols, carbohydrates, prostaglandins, some alkaloids) see Aldrichimica Acta, 1999, 32, 35; Synlett, 2009, 685

+ 22% epimer

Page 3: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

CO2HA. eutrophus

OH

CO2H

OH > 95% eeOrg. Lett., 2001, 3, 2923

mCPBA79%

OH

CO2H

OH

O

1.TMSCHN22. TBSOTf, Et3N

70%

OTBS

TBSO CO2Me

O

NO

OBnLi

N

73%

OTBS

TBSO

O

O

NO

OBn

N1. LiOTf (5 mol%), PhCH3, 60 °C2. TFA, DCM

62%N

O

HO

TBSOOH

HN

O OBn

NO

BnO2CO

O

H

O

N

OBnOTBS

Et

CO2PhOBoc

LDA, TMEDA,OH

OH

Me H

O

H

OH

H

O

N

OH

OH

1.

2. HF, ACN3. H2, Pd/C

71% (3 steps)

THF

O

NH2

(-) deoxycyclineScience, 2005, 308, 395

1. P. putida2. p-MBDMA

MeMe

O

OAr

Ar = C6H4OMe-p

Cl

CN

PhH, reflux

Cl CN

OO Ar

Me MeO

OBn

MgBr

MeOBn

OH

NaH, THF reflux

H

Me

O-OBn

aq NH4ClH

Me

OOBn

cat SnCl2CHCl3

Me

HOBn

OHmCPBA

Me

HOBn

OH

Ti(OiPr)4DCM, reflux

O

H

Me

OOBn

HO

Synlett, 1998, 897

1. OsO4(1.3 mol%), hv Ba(ClO4)22. Ac2O, Et3N

36%

OAc

OAcAcO

AcO

OAc

OAc

+

OAc

OAc

OAc

OAc6.2 : 1Angew. Chem. Int. Ed., 1995, 34, 2031

OH

OHOH

+

[FeII(TPA)(NCMe)2](OTf)2H2O2

4 : 1Chem. Commun., 2009, 50

6 5ABCD

quant70%

90%97%82%

"These experiments certainly demonstrate that the chemical equivalent of dihydroxylation of aromatics is feasible, although at this time it does not compete with the biological process in terms ofselectivity and efficiency. We hope that present and future generations of organic chemists are stimulated by the magnitude of this challenge and eventually succeed in the development of catalytic process that would rival the enzymatic transformation and allow for this reaction to be removed from the list of unsolved problems in organic chemistry"

Tomas Hudlicky, Synlett 2009, 685

Page 4: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

Photochemical methods

" The aromatic nucleus, known for its rigidity in the ground state, becomes an extremely flexible and extrovert acrobat when being doped with a light quantum"Egbert Havinga, Helv. Chem. Acta, 1967, 50, 2550[2+2] cycloadditions

OMe

+

CNhν

OMe CN

Me74%

Tet. Lett., 1977, 18, 3629

CN

O

CN

O

O

NC NC

O

90%

J. Chem. Soc. Perkin Trans 1 1992, 1145

OMe

MeO2C O

O

OE

hνO

EH+

MeOH/H+

OH

OMe

OMe

E

OH

O

+

64% 16%Synthesis, 2001, 1236

OMe

O nBu

hνH+

O

H

OMenBu

35%

+O

H

OMenBu

32%

Tetrahedron, 2002, 58, 7933For more examples of [2+2] with arenes:J. Org. Chem. 1981, 46, 2405Tetrahedron 1985, 41, 2405J. Chem. Soc. Perkin Trans. 1 1980, 2425

[4+2]

+O

OO

Cl

Cl

PhCOMe

O

OClCl

O

H+

O

O

Tet. Lett. 1974, 787

[4+4]

+ O

O

O

OO

OO

O

O

1. NaOH2. Pb(OAc)4, O2, pyr

Chem. Commun. 1979, 1038

hν, O2, Rose Bengal acetone, -78 °C

38%

O

O

OO J. Org. Chem. 1976, 41, 899; 900

tBu

Co(TPP) (5 mol%) acetone, -10 °C

51% OO

tBuO

O

J. Am. Chem. Soc. 102, 3641

85% 80%

+ H

H

HH

50%15%

cat Rh(I)

85%

Page 5: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

"The problems originally posed by many synthetic targets have now been solved at a practical level. However, for the majority of synthetic problems, solutions either do not exist or are far from beingpractical. In general, few solutions approach the ideal, wherein a target is prepared from readily-available starting materials in one step that proceeds in 100% yield and is operationally safe, simple and ecologically acceptable. Obviously, this is a rather demanding but no unrealistic objective. While it is unlikely to be commonly achieved, efforts to reach this standard of sophistication are of great importance as they are likely to lead to the fundamentally new science that will clearly have a profound impact on the ways in which total synthesis will be done in the future."

Paul Wender, Pure&Appl. Chem. 1990, 62, 1597[2+3] meta-photocycloaddition

R

hν*

RR1R1

R1

R1

R

R

R1

R1

R1

R1R

R1

R1

R

R1

R1

R

R1

R1

R

R = EDG

R = EWGGeneralities:- the nature of the reactive intermediates is not yet decided (biradical vs zwiterrion)- depending on the electronic nature of the arene substituents, the reaction is regioselective- RDS - bonding between the arene and the alkene- reaction proceeds via a concerted mechanism (alkene stereochemistry preserved)- reaction can be performed neat or in an inert solvent- it is temperature independent- for intermolecular reaction, an excess of the arene is required Chem. Rev. 1993, 93, 615

Li

Me

O

Me

H

+

H

Li, NH3

Hsilphinene

Tet. Lett. 1985, 2625

For a review of applications in total synthesis seePure&Appl. Chem. 1990, 62, 1597

O

MeTMSO

hν (254 nm)cyclohexane

89% O

MeTMSO

H

OH

H

MeTMSO

+

1 : 1.2

TMSO Me

O

OMe

Me

Me

HH

OMe

CO2H

Me

HO

HO

H

O

Lancidifolactone FOrg. Lett. 2008, 10, 1223

For a recent application in an asymmetric synthesissee J. Am. Chem. Soc. 2009, 131, 452

OMe

O

OHH

O

MeO

H

O

H O

OH

H

H

H

H

OMe

hν (254 nm)

8%

J. Am. Chem. Soc. 2009, 130, 404

TMSO Me

O

OMe

O Me

O

HOOMe

Me HO

OH+

1. mCPBA, DCM2. pTsOH, MeOH

69%(3 steps)

H H

Page 6: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Thermal cycloaddition

CNNCΔ

CN

CN

14%J. Am. Chem. Soc. 1968, 90, 215

Cl

Cl

Cl

Cl

Cl Cl

Cl

Cl Na, tBuOH THF

86%

Synthesis 1975, 707

60%

PhH, -10°C

N

O

SiMe2Ph

ΔN

Me

O

Me

SiMe2Ph

Chem. Ber. 1986, 119, 1953

Br tBuOK, 180 °C

Tet. Lett. 1976, 4559

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

OH

OH

O

O

O

+

O

O

O

O

Oneat, 250 °C

J. Chem. Soc. Perkin Trans. 1 1987, 1147

Radical methods for dearomatization

Bu3SnH, AIBN(PhSe)2, PhH, reflux

30%1,4 : 1,3 = 10:1

O

O

OH

I

CO2H

O

O

OH

CO2H

I2, NaHCO3

O

O

O

OH O

H

H I

71%

pancratistatin

J. Am. Chem. Soc. 1989, 111, 4829

Tetrahedron 2006, 62, 6830

Me

N

tBu

CCl3

O

Ni, AcOH reflux

N NtBu O

Cl

Cl

tBu O

Cl

Cl

Me Cl

Cl

21% 46%

+

Tet. Lett. 1997, 38, 5985

CO2Me

OMe

O

SmI2 (3.5 eq) THF

CO2Me OHMe

50%

SmI2 (5 eq), HMPA (18 eq)iPrOH (2 eq), THF, 0 °C

CO2Me

OMe

HHOMe α : β = 1 : 8

75%

Chem. Commun. 2002, 316

N

O

Me

SmI2, HMPA,tBuOH, THF, rt

N

H

H

H

OH

Me

56%

Chem. Eur. J. 2007, 13, 6047

benzobarrelene

Page 7: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

Pd-catalyzed dearomatization reactions

Cl

Me

Pd2(dba)3•CHCl3 (5 mol%)PPh3 (40 mol%), acetone, rt

SnBu3

82% Me

J. Am. Chem. Soc. 2001, 123, 759

Br

Cl

Pd2(dba)3 (5 mol%)PPh3 (20 mol%), DCM, rt

SnBu3

89%

Br

Angew. Chem. Int. Ed. 2008, 47, 4366

Me

Cl

Cl

Pd2(dba)3 (5 mol%)PPh3 (20 mol%), DCM, rt

SnBu3

71%

MeCl

Tetrahedron 2010, 66, 6013

Br

NH

Ph Pd2(dba)3 (3 mol%), ligand (4.5 mol%) Li(OtBu) (1.2 eq), THF, reflux

93%, 93% ee N

Ph

Pcy2NMe2

ligand =

J. Am. Chem . Soc. 2009, 131, 6676

Transition-metal mediated dearomatization methods

Cr(CO)3

- yellow to red (often) crystalline compounds- air stable in solid state- somewhat light sensitive- reactive towards strong nucleophiles (Cr(CO)3 enhances reactivity similar to a nitro group...)

+

Cr(CO)6 Inorg. Synth. 1990, 28, 136

Cr(CO)3L3 (L = ACN, Py, NH3) J. Org. Chem. 1992, 57, 6487

(naphtalene)Cr(CO)3 J. Organomet. Chem. 1985, 286, 183

unreactive successful metalation

LiCH(CO2R)2LiCH2CORMeMgBrtBuMgBrMe2CuLi

LiCH2CO2RLiCH2CNKCH2COtBuLiCH(CN)(OR)LiCH2SPhLiCH=CH2LiPhLiC≡CRLiCH2CH=CH2tBuLi

nBuLiLiMesBuLi

Reactivity of nucleophiles toward (PhH)Cr(CO)3 in THF

J. Am. Chem. Soc. 1979, 101, 3535

R

Cr(CO)3R'Li

R

Cr(CO)3

R'

R ProductOMe metaNMe2 metaMe, Et meta/orthoCl ortho/metaHydrazone orthoImine orthoOxazoline orthoSiMe3 paratBu paraCF3 para Chem. Rev. 2000, 100, 2917

Regioselectivity of nucleophilic addition

Page 8: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

NCy

Cr(CO)3

MeLi thenMeI, CO, HMPA THF

NHCy

Me

O

Me

BrNaH

58% (2 steps)

O

Me

Me

O

J. Org. Chem. 1994, 59, 4773

N

N

Cr(CO)3

OMe PhLi, THF, -90 °Cthen

TMSBr

73%, >98% ee

PhTMS

N

NR*

Pure Appl. Chem. 1997, 69, 543

N

OMe Li OEt1.

2. MeI, CO, HMPA3. NaOEt, MeI

53%, >95% eeCr(CO)3

CHO

Me

OEt

O

Me O

OAc

H

Me

Me

(-) acetoxytubifuranJ. Am. Chem. Soc. 2002, 125, 5642

Ph

OR*(OC)5Cr

1. sBuLi, THF2. MeOTf

68%

Me

Ph

Me

OR*Cr(CO)5

R* = (-) menthyl

1. C5H5N+O-

2. LAH3. H+

Me

Ph sBu

HO

Me

Ph sBu

HO

+

3 : 1

J. Am. Chem. Soc. 1996, 118, 13099

Mn+(CO)3

- stable, yellow compounds- often crystalline- increased electrophilicity compared to Cr-arene complexes - most common reactivity pattern: sequential nucleophilic attack

+

Mn(CO)3+

(in situ from Mn(CO)3Br and AgBF4)Synlett 1990, 565

Mn(CO)3ClO4Mn(CO)3(acetone)+

Mn(CO)3Br, AlBr3(for arenes with sensitive functionality)

J. Organomet. Chem. 1981, 204, C25

J. Am. Chem. Soc. 1957, 79, 5826

Mn+(CO)3

LAH

Mn(CO)3

H HCN

1.

2. O2

88%

CN

Organometallics 1993, 12, 224

NMe

O

Ru+Cp

Bu3P (1 eq), NaH (2 eq) DME, rt, 12h

47%

NMe

RuCp

O

CuBr2THF/H2O, CO

NMe

OHO

55%[CpRu(CO)2]Br +

Angew. Chem Int. Ed. 2007, 46, 2887Tetrahedron 2008, 64, 10123

For a review on organo-iron complexes see Tetrahedron 1983, 39, 4027

Page 9: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

Os2+(NH3)5

- η2-Os complexes are e-rich and prone to electrophilic substitution- thermally stable complexes- stable under inert atmosphere in solution- decomplexation with Mg or Zg/Hg in DME or MeOH

+ [Os(NH3)5(OTf)](OTf)2 (1.5 - 20 eq) !!!

[Os]2+ H2, Pd/C

89%[Os]2+

CH2(OMe)2TfOH

[Os]2+

OMe OMeTMSO

MeO2C

OMe

[Os]2+

AgOTf

82%(3 steps)

MeO2C

MeO

OMe

Me

Me

[Os]2+MVK, TfOHACN, -40 °C

96%

O+Me

[Os]2+

MeMe O

MeDMAc96%

O+Me

[Os]2+

MeHOMe dr 7:1

O

Me

Me

H

J. Am. Chem. Soc. 1998, 120, 6205

OR

[Os]2+

OR

E1

[Os]2+E1

+ Nu1-

OR

E1

[Os]2+

Nu1

E2+

OR

E1

[Os]2+

Nu1

E2

Nu2-

OR

E1

[Os]2+

Nu1

E2

Nu2

H+

-ROH

E1

[Os]2+

Nu1

E2

Nu2

Nu3-

Nu2

E1

[Os]2+

Nu1

E2

Nu3

and/or

E1

[Os]2+

Nu1

E2

Nu2

Nu3

E = H+ (TfOH), acetals, ketals, Michael acceptors, (RCO)2O, pyrroles, furans Tetrahedron, 2001, 57, 8203

OMe

[Os]2+

O

H2O, rt

OMe

[Os]2+HH

H

O

71%

J. Am. Chem. Soc. 1998, 120, 2218

Other viable dienophiles:

NMe

O

O

OR

R = H, Ph

HN

[Os]2++

CO2Me

CO2Me

DMA, rt95%

HN

CO2Me

CO2Me

[Os]2+

1. TBSOTf, ACN2. H2O/MeOH

98%

N+

H CO2MeMeO2C

H[Os]2+TfO-

dr 1:11. TBAB, ACN/MeOH2. TfOH, MeOH

N+

H CO2MeMeO2C

H[Os]2+TfO-H1. Cu(OTf)2

2. Me3N, aq Na2CO3

65%

N O

MeO2CH dr 1:1

N N

H H

HOHO

supindine labournineTetrahedron, 2001, 57, 8203

Page 10: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

Nucleophilic methods for dearomatizationR* R*

R'R'M

M = Li, Mg

RO

R O R

O

NR

O

OR

O

NH2

X

OC

N O

N

R

R* =

etc.

Chem. Rev. 2007, 107, 1580

O

CPh3

PhMgBr

Ph

O

CPh3

Ber. Dtsch. Chem. Ges. 1910, 43, 1145

PhMgBr

Ph

OH

Ph

CPh3

J. Am. Chem. Soc. 1953, 75, 4604

1,4-addition to aromatic ketones is favored in the case of hindered ketonesor when a bulky LA is employed

Mes O

OMe

MgBr1.

2. NH4Cl50%

Mes O

J. Org. Chem. 1961, 26, 756

Me

O 1. ATPH, Tol/THF2. tBuLi3. MeOTf

68%tBu

O

MeMe

J. Am. Chem. Soc. 1995, 117, 9091

OPh

PhATPH =

NCy1. nBuLi, HMPA2. MeI3. H+

60%

nBuMe CHO

nBuMe OH

NaBH4

Tet. Lett. 1987, 28, 5279

OMe

N OH3

1. iPrMgCl2. ClCO2Me3. H+

65%

iPrCHO

CO2Me

OMeKCN, MeOH

quant

iPr

CO2Me

OMe

J. Org. Chem. 2000, 65, 3018

CO2tBu NLi1., HMPA

2. MeI

Me CO2tBu

N

ON

+

64% 32%J. Org. Chem. 1995, 60, 7445

MeO

O

N Ph

Me Me

Ph

1. tBuLi (2 eq), HMPA2. NH4Cl3. 1M HCl

N

H

HMeO

O

Ph

MeMe

Ph94%

NBoc

O

MeH

HCO2Me

O

1. mCPBA2. NaOH3. TMSCHN2

NBoc

HHO CO2Me

Me

OH

CO2Me

NH

CO2H

Me CO2H

kainic acidChem. Commun. 2000, 317

For the synthesis of isodomoic acid C by a similar strategy see J. Am. Chem. Soc. 2005, 127, 2412

Al3

Page 11: Methods for DearomatizationMethods for Dearomatization Florina Voica Baran lab GM 11/6/2010 CO 2H A. eutrophus OH CO2H Org. Lett., 2001, 3, 2923 OH> 95% ee mCPBA 79% OH CO2H OH O 1.TMSCHN

Methods for Dearomatization Florina Voica Baran lab GM 11/6/2010

MeO

N

O

tBu

Ph

LDA, THF

MeO

NtBu

H Ph

OLi1. hν, 500 nm2. NH4Cl

73%MeO

Ph

H

H

NHtBu

O

J. Am. Chem. Soc. 2003, 125, 9278

N

O N

Bn

O1. Tf2O, 2,6-lutidine2. Ph3COH

67%NTf

BnN

OCPh3

O

NTf

BnN

OCPh3

O+ dr 30:1

Chem. Commun. 2009, 1964

O

O

N

O

tBu

1. THMPLi2. MeSO3H

O

O CO2Me

OMe

OMeMeO

1. DMDO2. LHMDS3. NH4Cl

O

O CO2Me

OMe

OMeMeO

OH

89%dr 10:1

64%, 96% ee

O

O CO2Me

OMe

OMeMeO

OH

O

O

OMe

OMeMeO

OH 1. ClSiMe2CH2Br2. HSnBu3, AIBN3. KF, KHCO3, H2O2

OH

68%, 97% eeO

O

4A MSZnCl2

98%97% ee

(-) EpipodophyllotoxinAngew. Chem. Int. Ed. 2003, 42, 2487

NN

N 1. BuLi2. Boc2O

69% N

Boc

NN

N

Me

Me

1. BuLi2. Boc2O

75%N

NBocN

Me

Me

Angew. Chem. Int. Ed. 2002, 41, 484Tetrahedron 2006, 62, 10854

Me

NSi

iPr

tBu tBu

Ph O

95%Me

N

SiO

H

Ph

iPr

tBu

tBu

J. Org. Chem. 2008, 73, 8113

For an example of nucleophilic dearomatization of aryl phosphinamidines seeJ. Org. Chem. 2007, 72, 9704

Miscellaneous dearomatization methods

NNH

O iPr

MeON

N

MeO

iPr

1. Tf2O, 2-ClPyr2. nPrMgBr nPr

N nPrH

O77% (4 steps)

Org. Lett. 2009, 11, 3398