Met One Instruments Model BAM-1020

25
Met One Instruments Met One Instruments Model BAM Model BAM - - 1020 1020 FEM Configurations FEM Configurations PM PM 2.5 2.5 Method EQPM Method EQPM - - 0308 0308 - - 170 170 PM PM 10 10 - - 2.5 2.5 Method EQPM Method EQPM - - 0709 0709 - - 185 185 AWMA PM2.5 Workshop 2011, Toronto, Ontario AWMA PM2.5 Workshop 2011, Toronto, Ontario Erik Zamurs, AKRULOGIC Erik Zamurs, AKRULOGIC

Transcript of Met One Instruments Model BAM-1020

Page 1: Met One Instruments Model BAM-1020

Met One InstrumentsMet One InstrumentsModel BAMModel BAM--10201020

FEM ConfigurationsFEM ConfigurationsPMPM2.52.5 Method EQPMMethod EQPM--03080308--170170

PMPM1010--2.52.5 Method EQPMMethod EQPM--07090709--185185

AWMA PM2.5 Workshop 2011, Toronto, OntarioAWMA PM2.5 Workshop 2011, Toronto, Ontario

Erik Zamurs, AKRULOGICErik Zamurs, AKRULOGIC

Page 2: Met One Instruments Model BAM-1020

Beta AttenuationBeta Attenuation

Particle ConcentrationC = mass/Volume

C = A*ρ/(µ*Volume) * ln(I0/I)

Where:I = I0 * e-µxWith m = ρ * V and V = A * xx=m/(ρ*A) I = Io * e-µ/(ρ*A) * mln(I/Io) = -µ / (ρ*A) * m

Page 3: Met One Instruments Model BAM-1020

Field TestsField Tests

Page 4: Met One Instruments Model BAM-1020

Test ResultsTest Results

Elizabeth, New Jersey (2008)Elizabeth, New Jersey (2008)

Valid Sets:Valid Sets: 2626FRM Precision:FRM Precision: 2.4%2.4%BAM Precision:BAM Precision: 3.1%3.1%

y = 1.0081x + 0.1614R2 = 0.9819

0

10

20

30

40

50

0 10 20 30 40 50

FRM (ug/m3)

BA

M-1

020

(ug/

m3)

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Page 5: Met One Instruments Model BAM-1020

Test ResultsTest ResultsElizabeth, New Jersey (2008)Elizabeth, New Jersey (2008) BAM ABAM A BAM BBAM B BAM CBAM CIndividual BAM ResultsIndividual BAM Results SlopeSlope 1.0171.017 1.0311.031 0.9820.982(Compared to FRM Mean)(Compared to FRM Mean) Int.Int. --0.4030.403 0.0340.034 0.7810.781

r2r2 0.9830.983 0.9820.982 0.9710.971

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Valid Set Number

Con

cent

ratio

n (u

g/m

3)

FRM MeanBAM ABAM BBAM C

Page 6: Met One Instruments Model BAM-1020

Field Test FindingsField Test Findings

BAMBAM--1020 Tends to Underestimate PM 1020 Tends to Underestimate PM During Cooler Periods (Winter)During Cooler Periods (Winter)

BAMBAM--1020 Overestimates During Hot & 1020 Overestimates During Hot & Humid Periods (Summer)Humid Periods (Summer)

Field Test FRM Results Differ From State Field Test FRM Results Differ From State Agency FRM ResultsAgency FRM Results

Page 7: Met One Instruments Model BAM-1020

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Test ResultsTest ResultsSeasonal - Cool Test Sites

(Logan, Allen Park, Bakersfield Winter, Dearborn)Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Page 8: Met One Instruments Model BAM-1020

Test ResultsTest ResultsSeasonal - Warm Test Sites

(New Haven, Elizabeth, Rubidoux Summer, Phoenix)

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Data Set Slope and Intercept, and Limits

-8

-6

-4

-2

0

2

4

6

8

0.8 0.9 1.0 1.1 1.2

Slope

Inte

rcep

t, ug

/m3

Page 9: Met One Instruments Model BAM-1020

Test ResultsTest Results

y = 1.02x + 0.5854R2 = 0.9953

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Test FRM Average (ug/m3)

BA

M-1

020

(ug/

m3)

y = 1.081x + 1.0333R2 = 0.99

0

10

20

30

40

50

60

0 10 20 30 40 50 60

State FRM (ug/m3)

BA

M-1

020

(ug/

m3)

BAM vs. Test FRMs, compared to BAM vs. State FRM (New Haven)

Page 10: Met One Instruments Model BAM-1020

Test ResultsTest Results

y = 0.9698x - 0.7436R2 = 0.9937

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80 90 100 110

Test FRM Average (ug/m3)

BA

M-1

020

(ug/

m3)

y = 1.0411x + 0.4181R2 = 0.987

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

State FRM (ug/m3)

BA

M-1

020

(ug/

m3)

BAM vs. Test FRMs, compared to BAM vs. State FRM (Bakersfield)

Page 11: Met One Instruments Model BAM-1020

Test ResultsTest ResultsBAM vs. Test FRMs, compared to BAM vs. State FRM (Elizabeth 2008)

y = 1.0081x + 0.1614R2 = 0.9819

0

10

20

30

40

50

0 10 20 30 40 50

Test FRM Average (ug/m3)

BA

M-1

020

(ug/

m3)

y = 1.1276x + 0.1968R2 = 0.9746

0

10

20

30

40

50

0 10 20 30 40 50

State FRM (ug/m3)

BA

M-1

020

(ug/

m3)

Page 12: Met One Instruments Model BAM-1020

BAMBAM--1020 Users 20061020 Users 2006

Page 13: Met One Instruments Model BAM-1020

BAMBAM--1020 Users 20111020 Users 2011

Page 14: Met One Instruments Model BAM-1020

BAMBAM--1020 Upgrades1020 UpgradesReduced Beta Source Reduced Beta Source PMT Spacing (Close PMT Spacing (Close Geometry)Geometry)

Rigid Tape Transport Rigid Tape Transport MechanismMechanism

Page 15: Met One Instruments Model BAM-1020

Characteristics of PMCharacteristics of PMSize (aerodynamic)Size (aerodynamic)DensityDensityShapeShapeSurface TextureSurface TextureColorColorComposition Composition H2O Surface AbsorptionH2O Surface AbsorptionVolatile ConstituentVolatile Constituent(Temperature + Humidity)(Temperature + Humidity)

Page 16: Met One Instruments Model BAM-1020

PM Measurement TechniquesPM Measurement Techniques

Quickest Response

Greatest Variability

Delayed Measurement

Best Detection Limit

Short Delayed Measurement

Detection Limit Adjustable

Accurate Mechanics Necessary

Online Measurement

Compensation Systems Necessary

Page 17: Met One Instruments Model BAM-1020

Moisture Trapped By ParticlesMoisture Trapped By Particles

Agglomerated Particles Can Be Covered With H2O

Page 18: Met One Instruments Model BAM-1020

Moisture Trapped By ParticlesMoisture Trapped By Particles

Effects on MeasurementEffects on Measurement

Improper Conditioning or Improper Conditioning or CompensationCompensation

Anomalous Anomalous Measurements During Measurements During Shifting HumidityShifting Humidity

HysteresisHysteresis effects for effects for ParticleParticle--bound waterbound water

Page 19: Met One Instruments Model BAM-1020

Weight Gain Of FilterWeight Gain Of Filter

(ISPRA 2003 (Vittorio Forcina + Annette Borowiak)

Page 20: Met One Instruments Model BAM-1020

Sample CondensationSample Condensation

Page 21: Met One Instruments Model BAM-1020

Humidity Correction Improve NetworkHumidity Correction Improve Network

Page 22: Met One Instruments Model BAM-1020

Memory IssuesMemory IssuesMass anomalies on filter media is possible due to:Mass anomalies on filter media is possible due to:

Change in HumidityChange in HumidityChange in TemperatureChange in Temperature

Sampling on the same spot continuallySampling on the same spot continuallymultiplies these effects.multiplies these effects.

The BAMThe BAM--1020 reduces the likelihood of these1020 reduces the likelihood of theseerrors by advancing the tape every hour.errors by advancing the tape every hour.

Page 23: Met One Instruments Model BAM-1020

Example of Memory & RH EffectsExample of Memory & RH Effects

Page 24: Met One Instruments Model BAM-1020

Stepwise vs. ContinuousStepwise vs. Continuous

Page 25: Met One Instruments Model BAM-1020

ConclusionConclusionGravimetric SamplersGravimetric Samplers

AdvantagesAdvantagesValues are the ReferenceValues are the ReferenceSimple Measurement TechniqueSimple Measurement Technique

DisadvantagesDisadvantagesExpensive OperationExpensive OperationLaboratory CostsLaboratory CostsNo Real Time ConcentrationNo Real Time Concentration

Continuous MonitorsContinuous Monitors

DisadvantagesDisadvantagesEquivalent to FRM?Equivalent to FRM?More Complex and More More Complex and More

Expensive Than SamplingExpensive Than Sampling

AdvantagesAdvantagesResults are Readily Available with Results are Readily Available with

Good Time ResolutionGood Time ResolutionLower Operating CostsLower Operating Costs