Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

16
Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input S. Werth A. Güntner with input from R. Schmidt and J. Kusche

description

S. Werth A. Güntner with input from R. Schmidt and J. Kusche. Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input. - PowerPoint PPT Presentation

Transcript of Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Page 1: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Meeting challenges on the calibrationof the global hydrological model

WGHM with GRACE data input

S. WerthA. Güntnerwith input from R. Schmidt and J. Kusche

Page 2: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Introduction

S: Water storage changeP: PrecipitationE: EvaporationR: Runoff

ΔS = P - R - E

Terrestrial water balance

Time-Variable Gravity and Surface Mass Processes: Validation, Processing and First Application of New Satellite Gravity Data (TIVAGAM)

2

Page 3: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

• Conceptual waterbalance model

• 0.5° spatial resolution

• Daily time-step

• Climate forcing data from CRU, GPCC, ECMWF

• Human water use accounted for

• Calibration for river dischargeat 1200 stations worldwide

ΔS = ΔScanop + ΔSsnow + ΔSsoil + ΔSgw + ΔSlakes + ΔSwetl + ΔSriver

The WaterGAP Global Hydrology Model (WGHM)

Total continental storage change:

3

Page 4: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Correspondence between GRACE and WGHM

Aim: Improve WGHM model results by a new calibration with GRACE data.

mm w.eq.

Mean maximum annual storage change (Gaussian filtering, 500 km)

GRACE

WGHM

4

Page 5: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Work plan for model calibration:

1) Analyze model propertiesa) Identification sensitive parametersb) Model uncertaintyc) Calibration test runs

2) Select adequate GRACE data and filter tools

3) Perform multi-objective model calibration

5

Page 6: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Work plan for model calibration:

1) Analyze model properties1) Identification sensitive parameters2) Model uncertainty3) Calibration test runs

2) Select adequate GRACE data and filter tools

3) Perform multi-objective model calibration

5

Page 7: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

1c) Single-objective calibration

WGHM Monte-Carlo run

Standard WGHM

WGHM single-objective, one-parameter calibration

Ob

1.0 0.5 0.0 -0.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Nash-Sutcliffe coefficient for water storage change

Nas

h-S

utcl

iffe

coef

ficie

nt

for

river

dis

char

ge

6

perfect model

simulation

Page 8: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Calibration approach

current parameter

sets

Evaluationof error

stop ?

Parameter-

variation

parameter set

ranking

Optimalsolution

yes

no

initial parameter

sets

Model simulation

GRACE total

storage variation

RunoffMeasureme

ntdata

7

0

err

or

dis

charg

e

Pareto

Frontier

0

single model simulation

error total storage change

0

Page 9: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Work plan for model calibration:

1) Analyze model properties1) Identification sensitive parameters2) Model uncertainty3) Calibration test runs

2) Select adequate GRACE data and filter tools

3) Perform multi-objective model calibration

8

Page 10: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

2) GRACE filter tool evaluation

worldwide 22 largest WGHM river basins

Filter type Parameter Source

Gaussian filter (GF) filter width Jekeli, 1981

Optimized for basin shape (OF) max. satellite error Swenson and Wahr, 2002

Optimized for exp. signal model (MF) correlation length, signal variance Swenson and Wahr, 2002

GRACE signal-noise-ratio optimized (SF) factor of formal errors Seo et al, 2005

Correlation Error Filter (CEF) filter window properties Swenson and Wahr, 2006

Decorrelation Filter (DDK) covariance matrix parameter Kusche, 2007

9

Page 11: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

2) GRACE filter tool evaluation: Amazon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wN

SK

500 1000 1500

filterwidth (km)

5101520

max. Satellite error (mm)

DDK decorrelated

w =10, n =30a e

w=30, n =30

a

e

w=20, n =30

a

ew =10, n =30

a

e

w =20, n =30a e

w =30, n =30a e

GFCEF decorrelated

OFCEF decorrelated

0

w =30, n =30

a

e

w =20, n =30a

e

w =10, n =30a

e

SFCEF decorrelated

5 10 15 20

error factor

50

100

150

2004006008001000

corrlation length (km)

= 250 mmσs

w =30, n =30a e

w =20, n =30a e

w =10, n =30a e 20

MFCEF decorrelated

Gaussian filter (GF)

Optimized for basin shape (OF)

Optimized for exp. signal model (MF)

GRACE signal-noise-ratio optimized (SF)

Correlation Error Filter (CEF)

Decorrelation Filter (DDK)10

Page 12: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

2) GRACE filter tool evaluation: Lena

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wN

SK

500 1000 1500

filterwidth (km)

5101520

max. Satellite error (mm)

w=10, n

=30

a

e

w=30, n

=30

a

e

w=20, n =30

a

e

w =30, n =30a e

w =20, n =30

a

ew =10, n =30a

e

GFCEF decorrelated

OFCEF decorrelated

DDK decorrelated

SFCEF decorrelated

0 5 10 15 20

error factor

w =20, n =30a e

w =10, n =30a e

w =30, n =30a e

MFCEF decorrelated

2004006008001000

corrlation length (km)

w =30, n =30a e

50

250= 300 mm

200

150

100

20

Gaussian filter (GF)

Optimized for basin shape (OF)

Optimized for exp. signal model (MF)

GRACE signal-noise-ratio optimized (SF)

Correlation Error Filter (CEF)

Decorrelation Filter (DDK)11

Page 13: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

2) GRACE filter tool evaluation

Basin WGHM GLDAS

Amazon OF, MF OF,MF

Ganges MF MF

Mississippi

GF DDK

Volga SF SF

Yukon OF, CEFMF

MFOptimal filter for 5 basin examples

ParameterParameter

ValuewNS

C

rg [km] 200 0.75

εmax [mm] 13 0.78

error factor 0.4 0.77

σs [mm], cl [km]

250, 200 0.78

wa, we, na, ne 30, 3, 2, 30 0.63

a, p 1014, 4 0.74Amazon wNSC values and filter parameter for different filter types

Filter

Gaussian filter (GF)

Optimized for basin shape (OF)

Optimized for exp. signal model (MF)

GRACE signal-noise-ratio optimized (SF)

Correlation Error Filter (CEF)

Decorrelation Filter (DDK)

12

Page 14: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Work plan for model calibration:

1) Analyze model properties1) Identification sensitive parameters2) Model uncertainty3) Calibration test runs

2) Select adequate GRACE data and filter tools

3) Perform multi-objective model calibration

13

Page 15: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Work plan for model calibration:

3) Calibration Realization

Implementation of Multi-objective calibration algorithms into WGHM:

DDS Dynamically Dimension Search► single-objective calibration algorithm extended for mutli-objective problems

NSGA-II Non-dominated Sorting Genetic Algorithm► evolutionary multi objective calibration algorithm

14

Page 16: Meeting challenges on the calibration of the global hydrological model WGHM with GRACE data input

Summary and Outlook

fulfilled steps:Model studies for selected river basinsAnalyses of GRACE filter toolsImplementation of calibration algorithm

next steps:Multi-objective calibration runsUse of differently processed GRACE data,

e.g. signal proportions from analysis of Schmidt et. al. 2007

15