Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz =...

46
Mechanical Metallurgy Mechanical Metallurgy INME 6016 Pablo G. CaceresValencia Professor in Materials Science, B.Sc., Ph.D. (UK)

Transcript of Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz =...

Page 1: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Mechanical MetallurgyMechanical Metallurgy

INME 6016

Pablo G. Caceres‐Valencia

Professor in Materials Science, 

B.Sc., Ph.D. (UK) 

Page 2: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

GENERAL INFORMATION

Course Number  INME 6016 

Course Title Mechanical Metallurgy

Credit Hours 3 (Lecture:  3hours)

Instructor Dr. Pablo G. Caceres‐Valencia

Office Luchetti Building L‐212 

Phone Extension 2358

Office Hours Mo and Wed 1:00pm to 5:00pm 

e‐mail [email protected]

[email protected]

Web‐site http://academic.uprm.edu/pcaceres

Page 3: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

AssessmentThe course will be assessed in the following manner:

Partial Exam  30%

Final Exam 30%

Quizzes (3)*  33%

Attendance and Class Participation 7%(*) A total of three quizzes will be performed.   

(**) Class Attendance (after the second absence ‐ 1 point will be deducted for each non‐authorized absence). The participation in class will be taken into account.

AttendanceAttendance and participation in the lectures are mandatory and will be considered in the grading. Students should bring calculators, rulers, pen and pencils to be used during the lectures. Students are expected to keep up with the assigned reading and be prepared for the pop‐quizzes or to answer questions on these readings during lecture.

Page 4: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

TexbooksG.E. Dieter; Mechanical Metallurgy; Mc Graw HillM.A. Meyers and K.K. Chawla; Mechanical Metallurgy: Principles and Applications; Prentice‐Hall I will also post my lecture notes in the web: http://academic.uprm.edu/pcaceres

TENTATIVES DATESJan/9‐11

Basic PrinciplesJan/14‐18 

Stress‐StrainJan/21‐25 

Basic Elasticity

Jan/28‐Feb/01 Basic Elasticity

Feb/04‐08 Single Crystals

Feb/11‐15Dislocation Theory

March/3‐7 Strengthening Mechanisms

Mar/24‐28 Fracture

April /14‐18 Mechanical Properties

Feb/18‐22 Dislocation Theory 1st Exam

Feb/25‐29 Strengthening Mechanisms

March/10‐14 Strengthening Mechanisms

Mar/17‐21–No Class ‐ Holy Week

April/1‐4Fracture

April/7‐11  Mechanical Properties Exam 2

April/22‐25 –Mechanical Properties

Apr/28‐May02‐Mechanical Properties

Page 5: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Content

•Stress and Strain Relationships for Elastic Behavior•Elements of the Theory of Elasticity•Plastic Deformation of Single Crystals•Dislocation Theory•Strengthening Mechanisms•Fracture•Mechanical Properties

Page 6: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

The Concept of Stress

0AF

Uniaxial tensile stress: A force F is applied perpendicular to the area (A). Before the application of the force, the cross section area was AO

Engineering stress or nominal stress: Force divided by the original area.

True stress: Force divided by the instantaneous area A

FT =σ

00

0

ll

lll Δ

=−

=εEngineering Strain or Nominal Strain: Change of length divided by the original length

True Strain: The rate of instantaneous increase in the instantaneous gauge length. ∫ ⎟⎟

⎞⎜⎜⎝

⎛==

o

iT

d lnε

Page 7: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ+⇒⎟⎟

⎞⎜⎜⎝

⎛ Δ+=

⎟⎟⎠

⎞⎜⎜⎝

⎛== ∫

oo

o

o

oT

o

iT

d

lnln

ln

ε

ε

Relationship between engineering and true stress and strain

i

o

oo

o

iiT A

AAF

AA

AF

AF ** ===σ

iioo AA =

)1(1 ε+=+Δ

=+Δ

==oo

o

o

i

i

o llAA )1( εσ +=

oT A

F

We will assume that the volume remains constant.

)1( εσσ +=T

)1ln( εε +=T

Page 8: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Primary Types of Loading

(a) Tension (b) Compression(c) Shear(d) Torsion(e) Flexion

Page 9: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Hooke’s LawWhen strains are small, most of materials are linear elastic.

σ

ε

E

Normal: σ = Ε ε

Young’s modulus

EAlFl

o

o

⋅⋅

Springs: the spring rate

o

o

lEA

lFk ⋅

=

Page 10: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Torsion Loading resulting from the twist of a shaft.

lr

zrZ

θδδθγθ

⋅≅⋅=,

lrG

zrGG zz

θδδθγτ θθ

⋅⋅≅⋅⋅=⋅= ,,

G = Shear Modulus of Elasticity

Shear strain

Twist Moment or Torque

∫∫ ⋅⋅

=⋅⋅=A zA z Ar

lGArT δθδτ θθ

2,,

∫ ⋅=A

ArJ δ2Area Polar Moment of Inertia

JGlT

lJGT

⋅⋅

=⋅⋅

= θθ or

JrT

z⋅

≅,θτThus:JrT o

Max⋅

≅τAngular spring rate:

lGJTka

⋅==

θ

Page 11: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

From equilibrium principles:τxy = τyx , τxz = τzx , τzy = τyz

Stress Components Normal Stresses σx, σy, σzShear Stresses τxy , τyx , τxz , τzx , τzy , τyz

Normal stress (σ) : the subscript identifies the face on which the stress acts. Tension is positive and compression is negative.Shear stress (τ) : it has two subscripts. The first subscript denotes the face on which the stress acts. The second subscript denotes the direction on that face. A shear stress is positive if it acts on a positive face and positive direction or if it acts in a negative face and negative direction.

Page 12: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

A shear strain in an element is positive when the angle between two positive faces (or two negative faces) is reduced, and is negative if the angle is increased.

Sign Conventions for Shear Stress and StrainThe Shear Stress will be considered positive when a pair of shear stress acting on opposite sides of the element produce a counterclockwise (ccw) torque (couple).

Page 13: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

⎥⎥⎥

⎢⎢⎢

==

zyzxz

zyyxy

zxyxx

ij

στττστττσ

σσ

For static equilibrium τxy = τyx , τxz = τzx , τzy = τyz resulting in

Six independent scalar quantities. These six scalars can be arranged in a 3x3 matrix, giving us a stress tensor.

The sign convention for the stress elements is that a positive force on a positive face or a negative force on a negative face is positive. All others are negative.The stress state is a second order tensor since it is a quantityassociated with two directions (two subscripts direction of the surface normal and direction of the stress).

Page 14: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

F1F3

F2Cube with a Face area Ao

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

==

000

0

0

23

31

oo

oo

ij AF

AF

AF

AF

σσ

A property of a symmetric tensor is that there exists an orthogonal set of axes 1, 2 and 3 (called principal axes) with respect to which the tensor elements are all zero except for those in the diagonal.

⎥⎥⎥

⎢⎢⎢

==

zyzxz

zyyxy

zxyxx

ij

στττστττσ

σσ⎥⎥⎥

⎢⎢⎢

⎡==

3

2

1'

000000

σσ

σ ijσ

Page 15: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Plane Stress or Biaxial Stress : When the material is in plane stress in the plane xy, only the x and y faces of the element are subject to stresses, and all the stresses act parallel to the x and y axes.

Stresses on Inclined SectionsKnowing the normal and shear stresses acting in the element denoted by the xy axis, we will calculate the normal and shear stresses acting in the element denoted by the axis x1y1.

⎥⎥⎥

⎢⎢⎢

00000

yyxy

yxxx

σττσ

Page 16: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

x1y1

x

y

θ

θ

σy

σx

σx1

τx1y1

τyx

τxy

Equilibrium of forces: Acting in x1

θθθτ

θθθσθτθσ

θσ

CosSinA

CosSinASinAAA

OYXOYOXYOXO

X ⋅+⋅+⋅+⋅=⋅ cossincoscos1

Ao

AO/Cosθ

AOSinθ/Cosθ

θ

Page 17: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Eliminating Ao , secθ = 1/cosθand τxy=τyx

θθτθσθσσ cossin2sincos 221 XYYXX ++=

Acting in y1

τx1y1Aosecθ = − σxAosinθ + τxyAocosθ + σyAotanθcosθ − τyxAotanθsinθ

Eliminating Ao , secθ = 1/cosθ and τxy=τyx

θθτθσθσσ cossin2cossin 221 XYYXY −+=

( )θθτθθσθθστ 2211 sincoscossincossin −+⋅⋅+⋅⋅−= xyyxyx

Page 18: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Transformation Equations for Plane StressUsing the following trigonometric identities:Cos2θ = ½ (1+ cos 2θ) Sin2θ = ½ (1- cos 2θ) Sin θ cos θ = ½ sin 2θ

These equations are known as the transformation equations for plane stress.

θτθσσ

τ

θτθσσσσ

σ

2cos2sin2

2sin2cos22

11

1

xyyx

yx

xyyxyx

x

+−

−=

+−

++

=

Page 19: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Case 1: Uniaxial stress

Special Cases

⎟⎠⎞

⎜⎝⎛⋅−=

⎟⎠⎞

⎜⎝⎛ +

⋅=

===

22

221

0 0

1,1

1

xy

θστ

θσσ

ττσ

Sin

Cos

xyx

xx

yxy

Case 2 : Pure Shear

θττ

θτσ

σσ

2

2

0

1,1

1

Cos

Sin

xyyx

xyx

yx

⋅=

⋅=

==

θτθσσ

τ

θτθσσσσ

σ

2cos2sin2

2sin2cos22

11

1

xyyx

yx

xyyxyx

x

+−

−=

+−

++

=

Page 20: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Case 3: Biaxial stress

θσσ

τ

θσσσσ

σ

τ

22

222

0

1,1

1

Sin

Cos

yxyx

yxyxx

xy

⋅−

−=

⋅−

++

=

=

Page 21: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example: An element in plane stress is subjected to stresses σx=16000psi, σy=6000psi, and τxy=τyx= 4000psi (as shown in figure below). Determine the stresses acting on an element inclined at an angle θ=45o (counterclockwise - ccw).

Solution: We will use the following transformation equations:

θτθσσ

τ

θτθσσσσ

σ

2cos2sin2

2sin2cos22

11

1

xyyx

yx

xyyxyx

x

+−

−=

+−

++

=

Page 22: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Numerical substitution½ (σx + σy) = ½ (16000 + 6000) = 11000psi½ (σx - σy) = ½ (16000 – 6000) = 5000psi τxy = 4000psisin 2θ = sin 90o = 1 cos 2θ = cos 90o = 0 Then σx1 = 11000psi + 5000psi (0) + 4000psi (1) = 15000psiτx1y1 = - (5000psi) (1) + (4000psi) (0) = - 5000psiσx1 + σy1 = σx + σy then σy1 = 16000 + 6000 – 15000 = 7000psi

psipsipsi

Max 403,6597,4403,17

2

1

===

τσσ

Page 23: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example: A plane stress condition exists at a point on the surface of a loaded structure such as shown below. Determine the stresses acting on an element that is oriented at a clockwise (cw) angle of 15o

with respect to the original element.

Solution:We will use the following transformation equations:

θτθσσ

τ

θτθσσσσ

σ

2cos2sin2

2sin2cos22

11

1

xyyx

yx

xyyxyx

x

+−

−=

+−

++

=

Page 24: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Numerical substitution½ (σx + σy) = ½ (- 46 + 12) = - 17MPa½ (σx - σy) = ½ (- 46 – 12) = - 29MPa τxy = - 19MPasin 2θ = sin (- 30o) = - 0.5 cos 2θ = cos (- 30o) = 0.866 then σx1 = - 17MPa + ( - 29MPa)(0.8660) + (-19MPa)(- 0.5) = - 32.6MPaτx1y1 = - (- 29MPa) (- 0.5) + (- 19MPa) (0.8660) = - 31.0MPaσx1 + σy1 = σx + σy then σy1 = - 46MPa + 12MPa – (- 32.6MPa) = - 1.4MPa

Page 25: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example : A rectangular plate of dimensions 3.0 in x 5.0 in is formed by welding two triangular plates (see figure). The plate is subjected to a tensile stress of 600psi in the long direction and a compressive stress of 250psi in the short direction. Determine the normal stress σw acting perpendicular to the line or the weld and the shear stress τw acting parallel to the weld. (Assume σw is positive when it acts in tension and τw is positive when it acts counterclockwise against the weld).

Page 26: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

SolutionBiaxial stress weld joint σx = 600psi σy = -250psi τxy = 0From the figure tanθ = 3 / 5 θ = arctan(3/5) = arctan(0.6) = 30.96o

We will use the following transformation equations:

Numerical substitution½ (σx + σy) = 175psi ½ (σx - σy) = 425psi τxy = 0psisin 2θ = sin 61.92o cos 2θ = cos 61.92o

θτθσσ

τ

θτθσσσσ

σ

2cos2sin2

2sin2cos22

11

1

xyyx

yx

xyyxyx

x

+−

−=

+−

++

=

Then σx1 = 375psi τx1y1 = - 375psiσx1 + σy1 = σx + σy

then σy1 = 600 + (- 250) – 375 = -25psi

-375psi

Θ = 30.96o

375psi25psi

x

y

Page 27: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Stresses acting on the weld

σw

θτw

25psi

375psiθ = 30.96o

σw = -25psi and τw = 375psi

Page 28: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Principal Stresses and Maximum Shear StressesThe sum of the normal stresses acting on perpendicular faces of plane stress elements is constant and independent of the angle θ.

YXYX σσσσ +=+ 11As we change the angle θ there will be maximum and minimum normal and shear stresses that are needed for design purposes.The maximum and minimum normal stresses are known as the principal stresses. These stresses are found by taking the derivative of σx1 with respect to θ and setting equal to zero.

θτθσσσσ

σ 2sin2cos221 xy

yxyxx +

−+

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

=+−−=

2

2tan

02cos22sin)(1

yx

xyP

xyyxx

σστ

θ

θτθσσδθ

δσ

Page 29: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

The subscript p indicates that the angle θp defines the orientation of the principal planes. The angle θp has two values that differ by 90o. They are known as the principal angles.

For one of these angles σx1 is a maximum principal stress and for the other a minimum. The principal stresses occur in mutually perpendicular planes.

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

2

2tanyx

xyP σσ

τθ

2

)(2cos 2sin

RRyx

Pxy

P

σσθ

τθ

−==

P

1

stress maximum for the

2sin2cos22

θθ

θτθσσσσ

σ

=

+−

++

= xyyxyx

x

Page 30: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

( )

( )

( ) ( )22

12

2

22

1

22

1

22

2 But

21

2

1122222

xyyxyx

xyyx

xyyxyx

xyyxyxxy

xyyxyxyx

R

R

RRRR

τσσσσ

στσσ

τσσσσ

σ

τσσσστ

τσσσσσσ

σ

+⎟⎟⎠

⎞⎜⎜⎝

⎛ −+

+=+⎟⎟

⎞⎜⎜⎝

⎛ −=

⎥⎥⎦

⎢⎢⎣

⎡+⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎠⎞

⎜⎝⎛+

+=

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛ −−+

+=

Principal stresses:

The plus sign gives the algebraically larger principal stress and the minus sign the algebraically smaller principal stress.

( )

( )22

2

22

1

22

22

xyyxyx

xyyxyx

τσσσσ

σ

τσσσσ

σ

+⎟⎟⎠

⎞⎜⎜⎝

⎛ −−⎟⎟

⎞⎜⎜⎝

⎛ +=

+⎟⎟⎠

⎞⎜⎜⎝

⎛ −+⎟⎟

⎞⎜⎜⎝

⎛ +=

Page 31: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Maximum Shear Stress

The location of the angle for the maximum shear stress is obtained by taking the derivative of τx1y1 with respect to θ and setting it equal to zero.

θτθσσ

τ 2cos2sin211 xy

yxyx +

−−=

xy

yx

S

xyyxyx

τ

σσ

θ

θτθσσδθ

δτ

22tan

02sin22cos)(11

−=

=−−−=

( )( )

( )( )o

P

oP

Po

Po

P

P

S

S

PPxy

yxS

902cos902sin

290cos290sin

2sin2cos

2cos2sin

2cot2tan1

2)(

2tan

−−

=−−−

=−=

−=−=−

−=

θθ

θθ

θθ

θθ

θθτ

σσθ

Therefore, 2θs-2θp=-90o or θs= θp +/- 45o

The planes for maximum shear stress occurs at 45o to the principal planes. The plane of the maximum positive shear stress τmax is defined by the angle θS1 for which the following equations apply:

0P1s111 45 and

2)(

2sin 2cos −=−

−== θθσσ

θτ

θRR

yxs

xys

Page 32: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

The corresponding maximum shear is given by the equationAnother expression for the maximum shear stress

The normal stresses associated with the maximum shear stress are equal to

( )22

2 xyyx

MAX τσσ

τ +⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

( )2

21 σστ

−=MAX

( )2

yxAVER

σσσ

+=

Equations of a Circle

( )2

21

1

1

2sin2cos2

2sin2cos2

2sin2cos22

⎥⎦

⎤⎢⎣

⎡+

−=−

+−

=−

+−

++

=

θτθσσ

σσ

θτθσσ

σσ

θτθσσσσ

σ

xyyx

AVERx

xyyx

AVERx

xyyxyx

xGeneral equation

Consider

Equation (1)

Page 33: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Equation (2) ( )2

211

11

2cos2sin2

2cos2sin2

⎥⎦

⎤⎢⎣

⎡+

−−=

+−

−=

θτθσσ

τ

θτθσσ

τ

xyyx

yx

xyyx

yx

Equation (1) + Equation (2)

( ) ( )22

211

21 2cos2sin

22sin2cos

2 ⎥⎦

⎤⎢⎣

⎡+

−−+⎥

⎤⎢⎣

⎡+

−=+− θτθ

σσθτθ

σστσσ xy

yxxy

yxyxAVERx

( ) ( )

( ) ( )

( ) 222

22222

22222

2

2cos2sin2

22cos2sin2

2cos2sin2

2cos2sin2

22sin2cos2

2sin2cos2

RSUM xyyx

xyyx

xyyx

xyyx

xyyx

xyyx

xyyx

=+⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −−+⎟⎟

⎞⎜⎜⎝

⎛ −−=⎥

⎤⎢⎣

⎡+

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛ −++⎟⎟

⎞⎜⎜⎝

⎛ −=⎥

⎤⎢⎣

⎡+

τσσ

θθτσσ

θτθσσ

θτθσσ

θθτσσ

θτθσσ

θτθσσ

( ) ( ) 2211

21 RyxAVERx =+− τσσ

Page 34: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

τxy2θP

σ

τ

C

( )22

2 xyyxR τ

σσ+⎟⎟

⎞⎜⎜⎝

⎛ −=

⎟⎟⎠

⎞⎜⎜⎝

⎛ +

2yx σσ

The radius of the Mohr circle is the magnitude R.

Mohr Circle

( )22

2 xyyxR τ

σσ+⎟⎟

⎞⎜⎜⎝

⎛ −=

The center of the Mohr circle is the magnitude

( )2

yxAVER

σσσ

+=

( ) ( ) ( )22

211

21 2

xyyx

yxAVERx τσσ

τσσ +⎟⎟⎠

⎞⎜⎜⎝

⎛ −=+−

Page 35: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Alternative sign conversion for shear stresses:

(a) clockwise shear stress,(b) counterclockwise shear

stress, and (c) axes for Mohr’s circle.

Note that clockwise shear stresses are plotted upward and counterclockwise shear stresses are plotted downward.

a) We can plot the normal stress σx1 positive to the right and the shear stress τx1y1 positive downwards, i.e. the angle 2θ will be positive when counterclockwise or

b) We can plot the normal stress σx1 positive to the right and the shear stress τx1y1 positive upwards, i.e. the angle 2θ will be positive when clockwise.

Both forms are mathematically correct. We use (a)

Forms of Mohr’s Circle

Page 36: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Two forms of Mohr’s circle: (a) τx1y1 is positive downward and the angle 2θis positive counterclockwise, and(b) τx1y1 is positive upward and the angle 2θ is positive clockwise. (Note: The first form is used here)

Page 37: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Construction of Mohr’s circle for plane stress.

Page 38: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example: At a point on the surface of a pressurized cylinder, the material is subjected to biaxial stresses σx = 90MPa and σy = 20MPa as shown in the element below.Using the Mohr circle, determine the stresses acting on an element inclined at an angle θ = 30o (Sketch a properly oriented element).

Solution (σx = 90MPa, σy = 20MPa and τxy = 0MPa)Because the shear stress is zero, these are the principal stresses.Construction of the Mohr’s circleThe center of the circle is σaver = ½ (σx + σy) = ½ (90 + 20) = 55MPaThe radius of the circle is R = SQR[((σx – σy)/2)2 + (τxy)2] R= (90 – 20)/2 = 35MPa.

Page 39: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Stresses on an element inclined at θ = 30o

By inspection of the circle, the coordinates of point D areσx1 = σaver + R cos 60o = 55MPa + 35MPa (Cos 60o) = 72.5MPaτx1y1 = - R sin 60o = - 35MPa (Sin 60o) = - 30.3MPaIn a similar manner we can find the stresses represented by point D’, which correspond to an angle θ = 120o ( 2θ = 240o)σy1 = σaver - R cos 60o = 55MPa - 35MPa (Cos 60o) = 37.5MPaτx1y1 = R sin 60o = 35MPa (Sin 60o) = 30.3MPa

Page 40: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example: An element in plane stress at the surface of a large machine is subjected to stresses σx = 15000psi, σy = 5000psi and τxy = 4000psi, as shown in the figure.

Using the Mohr’s circle determine the following:a) The stresses acting on an element inclined at

an angle θ = 40o

b) The principal stresses andc) The maximum shear stresses.

SolutionConstruction of Mohr’s circle:Center of the circle (Point C): σaver = ½ (σx + σy) = ½ (15000 + 5000) = 10000psiRadius of the circle: R = SQR[((σx – σy)/2)2 + (τxy)2] R = SQR[((15000 – 5000)/2)2 + (4000)2] = 6403psi.Point A, representing the stresses on the x face of the element (θ = 0o) has the coordinates σx1 = 15000psi and τx1y1 = 4000psiPoint B, representing the stresses on the y face of the element (θ = 90o) has the coordinates σy1 = 5000psi and τy1x1 = - 4000psiThe circle is now drawn through points A and B with center C and radius R

Page 41: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Stresses on an element inclined at θ = 40o

These are given by the coordinates of point D which is at an angle 2θ = 80o from point A. By inspection the angle ACP1 for the principal stresses (point P1) is tan ACP1 = 4000/5000 = 0.8 or 38.66o.Then, the angle P1CD is 80o – 38.66o = 41.34o

Page 42: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Knowing this angle, we can calculate the coordinates of point D (by inspection)σx1 = σaver + R cos 41.34o = 10000psi + 6403psi (Cos 41.34o) = 14810psiτx1y1 = - R sin 41.34o = - 6403psi (Sin 41.34o) = - 4230psiIn an analogous manner, we can find the stresses represented by point D’, which correspond to a plane inclined at an angle θ = 40o + 90o = 130o

σy1 = σaver - R cos 41.34o = 10000psi - 6403psi (Cos 41.34o) = 5190psiτx1y1 = R sin 41.34o = 6403psi (Sin 41.34o) = 4230psiAnd of course, the sum of the normal stresses is 14810psi + 5190psi = 15000psi + 5000psi

Page 43: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Principal StressesThe principal stresses are represented by points P1 and P2 on Mohr’s circle.σ1 = 10000psi + 6400psi = 16400psiσ2 = 10000psi – 6400psi = 3600psiThe angle it was found to be 2θ = 38.66o

or θ = 19.3o

Maximum Shear StressesThese are represented by point S1 and S2 in Mohr’s circle. The angle ACS1 from point A to point S1 is 2 θS1 = 51.34o. This angle is negative because is measured clockwise on the circle. Then the corresponding θS1 value is – 25.7o.

Page 44: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Example:At a point on the surface of a generator shaft the stresses are σx = -50MPa, σy = 10MPa and τxy = - 40MPa as shown in the figure. Using Mohr’s circle determine the following:

(a) Stresses acting on an element inclined at an angle θ = 45o,

(b) The principal stresses and(c) The maximum shear stressesSolutionConstruction of Mohr’s circle:Center of the circle (Point C): σaver = ½ (σx + σy) = ½ ((-50) + 10) = - 20MPaRadius of the circle: R = SQR[((σx – σy)/2)2 + (τxy)2] R = SQR[((- 50 – 10)/2)2 + (- 40)2] = 50MPa.Point A, representing the stresses on the x face of the element (θ = 0o) has the coordinates σx1 = -50MPa and τx1y1 = - 40MPaPoint B, representing the stresses on the y face of the element (θ = 90o) has the coordinates σy1 = 10MPa and τy1x1 = 40MPaThe circle is now drawn through points A and B with center C and radius R.

Page 45: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Stresses on an element inclined at θ = 45o

These stresses are given by the coordinates of point D (2θ = 90o

of point A). To calculate its magnitude we need to determine the angles ACP2 and P2CD.

tan ACP2=40/30=4/3 ACP2=53.13o P2CD = 90o – ACP2 = 90o – 53.13o = 36.87o

Then, the coordinates of point D areσx1 = σaver + R cos 36.87o = - 20MPa – 50MPa (Cos 36.87o) = - 60MPaτx1y1 = R sin 36.87o = 50MPa (Sin 36.87o) = 30MPaIn an analogous manner, the stresses represented by point D’, which correspond to a plane inclined at an angle θ = 135o or 2θ = 270o

σy1 = -20MPa + 50MPa (Cos 36.87o) = 20MPa τx1y1 = -30MPaAnd of course, the sum of the normal stresses is -50MPa+10MPa = -60MPa +20MPa

Page 46: Mechanical Metallurgy - · PDF fileFrom equilibrium principles: τxy = τyx, τxz = τzx , τzy= τyz Stress Components Normal Stresses σ x, σ y, σ z Shear Stresses τxy, τyx,

Principal StressesThey are represented by points P1 and P2 on Mohr’s circle.σ1 = - 20MPa + 50MPa = 30MPa σ2 = -20MPa – 50MPa = - 70MPaThe angle ACP1 is 2θP1 = 180o + 53.13o

= 233.13o or θP1 = 116.6o

The angle ACP2 is 2θP2 = 53.13o or θP2= 26.6o

Maximum Shear StressesThese are represented by point S1 and S2in Mohr’s circle. The angle ACS1 is 2θS1 = 90o + 53.13o = 143.13o or θ = 71.6o . The magnitude of the maximum shear stress is 50MPa and the normal stresses corresponding to point S1 is -20MPa.