Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the...

55
Wouter Verkerke, NIKHEF Measurement of sin2 b with charmonium decays and gluonic penguin decays Wouter Verkerke NIKHEF, Amsterdam

Transcript of Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the...

Page 1: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measurement of sin2βwith charmonium decays and gluonic penguin decays

Wouter Verkerke

NIKHEF, Amsterdam

Page 2: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Outline

• CP violation

• Introduction:Standard Model CP violation & the CKM mechanism

• Testing the Standard Model:measurement of sin(2β) from charmonium KS decays

• Looking for signs of new physics:measurement of sin(2β) from bàspenguin decays

• Comparison and summary

N(B à f) ? N(Bàf)

Page 3: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

• In the Standard Model, the CKM matrix elements Vij describe the electroweak coupling strength of the W to quarks– CKM mechanism introduces quark flavor mixing

– Complex phases in Vij are the origin of SM CP violation

The Cabibbo-Kobayashi-Maskawa matrix

CP The phase changes signunder CP.

Transition amplitude violates CP if Vub ? Vub*, i.e. if Vub has a non-zero phase

Mixes the left-handed charge –1/3 quark mass eigenstatesd,s,b to give the weak

eigenstatesd’,s,b’.

tbtstd

cbcscd

ubusud

VVVVVVVVV

Page 4: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Structure of the CKM matrix

• The CKM matrix Vij is unitary with 4 independent fundamental parameters (including 1 irreducible complex phase)– Magnitude of elements strongly ranked (leading to ~diagonal form)– Choice of overall complex phase arbitrary – only Vtd and Vub have

non-zero complex phases in Wolfenstein convention

– Measuring SM CP violation à Measure complex phase of CKM elements

ß

-i

-i

?1 11 1 1

1 1

e

e

CKM phases (in Wolfenstein convention)

u

d

t

c

bsCKM magnitudes

Some of the real elements in the Wolfenstein convention may have small O(λ4) complex phases

λ

λ

λ3 λ2

λ2

λ3

λ=cos(θc)=0.22

Page 5: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Visualizing the phase – the unitarity triangle

• Phases of CKM elements Vtd and Vub are related to CPV in SM– Visualization: β and γ are two angles of a triangle.

– Surface of triangle is proportional to amount of CPV introduced by CKM mechanism

ß

-i

-i

?1 11 1 1

1 1

e

e

Page 6: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Amplitude phases and observables CP violation

• How do complex phase affect decay rates – Only affects decays with >1 amplitude

– Decay rate ∝ |A|2 à phase of sole amplitude does not affect rate

• Consider case with 2 amplitudes with same initial and final state -Decay rate ∝ |A1 + A2|2

A1 = |A1|*exp(iφ1) A2 = |A2|*exp(iφ2)

+ |A1|2 + |A2|2 + 2|A1||A2| cos(φ1-φ2)=

2

|A1|

φ1

|A2|

φ2+ A1+A2=

Page 7: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Amplitude phases and observables CP violation

• Observable summed amplitude clearly depends on phase difference

|A1|

φ1

|A2|

φ2+ = A1+A2

|A1|

φ1

|A2|

φ2+ = A1+A2

|A1|

φ1

|A2|

φ2+ =A1+A2

A1+A2

A1+A2

A1+A2

+ = +ω

ω

ω

CP

CP

CP

CP

Page 8: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Amplitude phases and observables CP violation

• Dependence on ∆φ scales with amplitude ratio– Observation in practice requires amplitudes of comparable magnitude

|A1|

φ1

|A2|

φ2+ = A1+A2

|A1|

φ1

|A2|

φ2+ = A1+A2

|A1|

φ1

|A2|

φ2+ =A1+A2

+ = +ω

ω

ω

A1+A2

A1+A2

A1+A2

CP

CP

CP

CP

Page 9: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

)(exp||)( otherweakfB iAfBA δϕ +=→ →

)(exp||)( otherweakfB iAfBA δϕ +−=→ →

CPha

dron

izat

ion

hadr

oniz

atio

n

Measuring the CKM phases from CP violation

• Decay rate of interfering amplitudes sensitive to phase difference– How disentangle weak phase from overall phase difference between

amplitudes?

• Exploit that weak phase flips sign under CP transformation– Look at decay rates for B àf and B à f

CP

CP

Page 10: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

How the weak phase introduces observable CPV

• Effect of weak phase sign flip on interfering amplitudes

+

+Bàf

BàfA=a1+a2

A=a1+a2

=

=

δ+φ

a1

a2A

δ-φa1

a2

A

CP 22

22

||||||||

AAAA

ACP +−

= related to φweak

CP

CP

CP

CP

Page 11: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

A

a1

a2

+φweak

A

a1

a2

-φweak

But not always…

• Effect of weak phase sign flip on interfering amplitudes

+Bàf

A=a1+a2

A=a1+a2

=

=

CP 22

22

||||||||

AAAA

ACP +−

= =0, need δ? 0 too!

+CP

CP

Bàf

Page 12: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

• Find 2 interfering amplitudes with relative weak phase β– Requires CKM element Vtd

– Vtd appears twice B0-B0 mixing process

– Mixing process introduces a weak phase of 2βand a CP-invariant phase of π/2

• Find process with two interfering amplitudes: one withmixing and one without– B à f

– B à B à f

– Final state f must be CP eigenstate as both B and B must decay into it

A clean way to measure the CP angle β

ß

-i

-i

?1 11 1 1

1 1

e

e

phase = φdecay

phase = φdecay + φmixing∆φ = φmixing

Page 13: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The golden mode B0 à J/ψ KS

• An experimentally and theoretically clean CP eigenstate fCP with no weak phase of its own is B0 à J/ψ KS

• But mixing amplitude is decay time dependent

B0 à f B0 à B0 à f

2π × ∆md ≈ 2τB

N(B

0)-

N(B

0)

N(B

0)+

N(B

0)

B0 – B0 mixing oscillation vs decay timeB0 à B0 à f amplitudeis decay time dependent

Interference and observableCPV is decay time dependent

Maximal CPV when amplitudesequal, around t = 2π⋅∆md ~= 2τB

All initial flavor

50%/50%

All opposite flavor

Page 14: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

)sin()2sin();( tmtfA dCP ∆= β

The golden mode B0 à J/ψ KS

• When mixed and unmixed amplitude are of equal magnitude

• Working out the more general case gives

)2sin(00

00

β=+

−=

→→

→→

fBfB

fBfBCP NN

NNACP

+ =π/2+2β

+ = π/2-2β

N(B0 à f) ∝ |A|2 ∝ (1-cosφ)2+sin2φ= 1 -2cosφ+cos2φ+sin2φ= 2-2cos(π/2+2β)∝ 1-sin(2β)

N(B0 à f) ∝ (1+cosφ)2+sin2φ= 2+2cos(π/2-2β)∝ 1+sin(2β)

02

0

( )( )

if

A B fe

A B fβλ − →=

1-cos(φ)

sin(φ

)

sin(φ

)

1+cos(φ)

Even more general form that also allows for CP violation in decay amplitude

Generalized for any decay time

(0 if |λ|=1)(sin(2β) if |λ|=1)

Page 15: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The golden mode B0 à J/ψ KS

• What will it look like?

• Why is it ‘golden’?– Virtually free of Standard Model pollution.

Next largest decay amplitude for B0 à J/ψ KShas same weak phase as leading diagram.

– Theoretical uncertainty on procedure of order 1%

)cos(00

00tm

NN

NNA

BB

BBMIX ⋅∆=

+

−=

)sin()2sin(00

00

tmNN

NNA

fBfB

fBfBCPV ⋅∆=

+

−=

→→

→→ β

Maximal CPV if A(Bàf)=A(BàBàf)

PRL 88,221803

Page 16: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The PEP-II B factory – specifications

• Produces B0B0 and B+B- pairs via Y(4s) resonance (10.58 GeV)

• Asymmetric beam energies– Low energy beam 3.1 GeV

– High energy beam 9.0 GeV

• Boost separates B and B and allows measurement of B0 life times

• Clean environment– ~28% of all hadronic interactions is BB

BB threshold

ϒ(4S)

Page 17: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The PEP-II B factory – performance

• PEP-II top lumi: 9.2x1033 cm-2s-1

– ~10 BB pairs per second

• Continuous ‘trickle’ injection– Reduces data taking interruption

for ‘top offs’

• Integrated luminosity– PEP-II delivered: 254 fb-1

– BaBar recorded: 244 fb-1

– Most analyses use 205fb-1 of on-peak data (227M BB pairs)

Integrated luminosity

Lumi recorded each day

beamcurrents

beamcurrents

Page 18: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEFSilicon VertexDetector (SVT)

Drift chamber (DCH)

ElectromagneticCalorimeter (EMC)

1.5 T Solenoid

InstrumentedFlux Return (IFR)

SVT: 5 layers double-sided Si.

DCH: 40 layers in 10 super-layers, axial and stereo.

DIRC: Array of preciselymachined quartz bars. .

EMC: Crystal calorimeter (CsI(Tl))Very good energy resolution.Electron ID, π0 and γ reco.

IFR: Layers of RPCs within iron.Muon and neutral hadron (KL)

The BaBar experiment

• Outstanding K± ID• Precision tracking (∆t measurement)• High resolution calorimeter• Data collection efficiency >95%

Detector forInternally reflectedCherenkov radiation(DIRC)

Page 19: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Silicon Vertex Detector

Beam pipe

Layer 1,2Layer 3

Layer 4Layer 5

Beam bending magnets

Readoutchips

Page 20: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Cerenkov Particle Identification system

• Cerenkov light in quartz– Transmitted by internal reflection– Rings projected in standoff box– Thin (in X0) in detection volume,

yet precise…

Page 21: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Selecting B decays for CP analysis

• Principal event selection variables– Exploit kinematic constraints from beam energies

– Beam energy substituted mass has better resolution than invariant mass

Energy-substituted mass Energy difference Event shape

2*2*BbeamES pEm −= **

beamB EEE −=∆

BB events

qq events(q=u,d,s,c)

σ(mES) ≈ 3 MeV σ(∆E) ≈15 MeV

Page 22: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Collecting CP event samples

• Collect as many (cc)s decay modes as possible in increase statistics

+1

+0.51

-1

-1

-1

-1

-1

-1

?CP

56%2788J/? KL

78%7730Total

92%4370Total for ?CP=-1

77%

74%

85%

87%

88%

96%

purity

572J/? K*0(K*0? KSp 0)

287?c KS (KS? p +p -)

194?c1 KS (KS? p +p -)

485? (2S) KS (KS? p +p -)

653J/? KS (KS? p 0p0)

2751J/? KS (KS? p +p -)

NTAGCP sample

Page 23: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring (time dependent) CP asymmetries

• Need to measure N(B0 à f) and N(B0 à f) – So need to know initial flavor of decay. Exploit fact that B0B0 system

evolves coherently à Flavor of ‘other B’ tags flavor of B0 à f at t=0

– Measure N( Y(4s) à B0(à fflav) B0(à fCP) ) ,N( Y(4s) à B0(à fflav) B0(à fCP) ) and decay time difference

B-Flavor Tagging

Vertexing

∆t=1.6 ps à ∆z ≈250 µmσz ≈

170 µmσz ≈

70 µm

≈ ∆z/γβc

Tag-side vertexing~95%efficient

Exclusive B Meson

Reconstruction

Page 24: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Flavor tagging

Leptons : Cleanest tag. Correct >95%

Kaons : Second best. Correct 80-90%

b c

e−

νW−

b c

e+

νW+

bW−

c su

d

K−

W+b

W+c s

u

d

K+

W−

Full tagging algorithm combines all in neural network

Four categories based on particle content and NN output.

Tagging performance

Q = 30.5%

Determine flavor of Btag ≡ BCP(∆t=0)from partial decay products

efficiency mistake rate

tagging Q Nσ ∝ ⋅

Page 25: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

B0(∆t) B0(∆t) ACP(∆t) = S⋅sin(∆md∆t)+C⋅cos(∆md∆t)

sin2β

D⋅sin2β

Putting it all together: sin(2β) from B0 à J/ψ KS

• Effect of detector imperfections

– Dilution of ACP amplitude due imperfect tagging

– Blurring of ACP sine wave due to finite ∆t resolution

Imperfect flavor tagging

Finite ∆t resolution

∆t ∆t

Page 26: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measurement method: tagging efficiency & time resolution

• Flavor tagging performance and decay time resolution are measured from sample of Y(4s) à B0(fflav) B0(fflav) events– Determine flavor of 1st B with usual flavor tagging algorithm

– Determine flavor of 2nd B from explicit reconstruction in flavor eigenstate

D

1

95.8%

89.4%

83.1%

purity

72878Total

4896J/? K*0(K*0? K+p -)

35008D*- p +/?+/a1+

32974D- p +/?+/a1+

NTAGBFlav sample

Imperfect flavor tagging

Finite ∆t resolution

Page 27: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Combined golden modes result for sin2b

sin2ß = 0.722 ± 0.040 (stat) ± 0.023 (sys)No evidence for additional CPV in decay |?|=0.950±0.031(stat.)±0.013

J/? KL (CP even) mode(cc) KS (CP odd) modes

(2002 measurement: sin(2ß) = 0.741±0.067±0.034)

hep-ex/0408127

Page 28: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Consistency checks

?2=11.7/6 d.o.f. Prob (?2)=7% ?2=1.9/5 d.o.f. Prob (?2)=86%

J/?KS(p+p -) Lepton tags?F=-1 modes

Page 29: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

4

Standard Model interpretation

η

ρMethod as in Höcker et al, Eur.Phys.J.C21:225-259,2001

Measurement of sin(2β)now real precision testof Standard Model

4-fold ambiguity because we measure sin(2β), not β

1

2

3

Results are still statistics dominated and will be for the foreseeable future

without sin(2β)

Page 30: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Standard Model interpretation

η

ρMethod as in Höcker et al, Eur.Phys.J.C21:225-259,2001

4-fold ambiguity because we measure sin(2β), not β

1

2

4

3

Four-fold ambiguity becausewe measure sin(2β), not β

β à −β, β à β+π

We can eliminate 1st ambiguity if we also know cos(2β)More precisely, we only need to know the sign of cos(2β)

Measurement of sin(2β)now real precision testof Standard Model

Results are still statistics dominated and will be for the foreseeable future

with sin(2β)

Page 31: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring cos(2ß) with B0? J/? K*0(KSp 0)

• Decay B0 à J/? K*0(KSπ0) is one of charmonium samples used to measure sin(2β)– But it is a scalar à vector vector decay, so there are 3 decay

amplitudes with different polarizations

• Composition in terms of amplitudes (in transversity basis)– A0 – Longitudinal polarization (57%)

– A// – Transverse polarization (20%)J/y and K* polarization parallel

– AT – Transverse polarization, (23%)J/y and K* polarization perpendicular

• In sin2β measurement we account for this by using a weighted average of CP eigenvalues of +0.51

CP-even (η=+1)

CP-odd (η=-1)

Page 32: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring cos(2ß) with B0? J/? K*0(KSp 0)

• But if you also include angular information from the decay products you can disentangle the 3 amplitudes– Many extra terms in time-dependent decay rate, including

two that are proportional to cos(2ß) :

even) (CP

even) (CP

odd) (CP

||

0

||||

00

δ

δ

δ

i

i

iTT

eAA

eAA

eAA T

=

=

=

)sin()2cos()-cos()(e± ||||4|t|- tmAAf TT ∆∆∆Γ βδδω

r

)sin()2cos()-cos()(e± 006|t|- tmAAf TT ∆∆∆Γ βδδω

r

decay angles:

)),cos(),(cos( * trtrKφθθω =

r

angular amplitudes

....)2cos,2sin),(,( =ββω tg Ar

Page 33: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring cos(2ß) with B0? J/? K*0(KSp 0)

• We know many of the amplitudes, phase differences – From measurement of B±? J/ψK*± and B0? J/ψK*0 (K+π-) using

time-integrated angular analysis

0.0040.0150.230A

0.0050.0150.204A

0.0050.0120.566A

2T

2

||

20

±±=

±±=

±±=

0.0460.070 0.184d-d

0.0520.01012.729d-d

0T

0||

±±=

±±=

0.0460.070 2.958d-d

0.0520.01012.729d-d

0T

0||

±±=

±±−=

“solution 1”

“solution 2”

Amplitude magnitudes Amplitude phase differences(with 2-fold ambiguity)

)sin()2cos()-cos()(e± ||||4|t|- tmAAf TT ∆∆∆Γ βδδω

r

)sin()2cos()-cos()(e± 006|t|- tmAAf TT ∆∆∆Γ βδδω

r

Plug into time dependent cross section

Page 34: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring cos(2ß) with B0? J/? K*0(KSp 0)

• We know many of the amplitudes, phase differences – From measurement of B±? J/ψK*± and B0? J/ψK*0 (K+π-) using

time-integrated angular analysis

0.0040.0150.230A

0.0050.0150.204A

0.0050.0120.566A

2T

2

||

20

±±=

±±=

±±=

0.0460.070 0.184d-d

0.0520.01012.729d-d

0T

0||

±±=

±±=

0.0460.070 2.958d-d

0.0520.01012.729d-d

0T

0||

±±=

±±−=

“solution 1”

“solution 2”

Amplitude magnitudes Amplitude phase differences(with 2-fold ambiguity)

)sin()2cos()-cos()(e± ||||4|t|- tmAAf TT ∆∆∆Γ βδδω

r

)sin()2cos()-cos()(e± 006|t|- tmAAf TT ∆∆∆Γ βδδω

r

Plug into time dependent cross section

PROBLEM!We don’t know the sign of the phase difference, so we can only measure

cos(2β) except for its sign

But to break the ambiguity in b we precisely need the sign!

Page 35: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Measuring cos(2ß) with B0? J/? K*0(KSp 0)

• Solution: find a new way to measure the sign of the phase differences δ//-δ0 and δT-δ0

– Central idea: include (Kπ) S-wave in angular analysis ‘non-resonant events’:

– Extra terms due to interference of S-wave and P-wave contributions to Kπ final state and help solve the ambiguity

K*0(890) (P-wave)

Non-resonant (S-wave)

SdiSS eAA =

)...d-cos(dAA)?(f± 0SS010

r)...d-cos(dAA)?(f± S||S||8

r )...d-cos(dAA)?(f± STST9

r

Page 36: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Breaking the ambiguity

• Why it works: Phase difference δs-δ0 has special property as consequence of Wigner causality:

0.0460.070 0.184d-d

0.0520.01012.729d-d

0T

0||

±±=

±±=

0.0460.070 2.958d-d

0.0520.01012.729d-d

0T

0||

±±=

±±−=

? solution 1: unphysical solution

? solution 2: physical solution

BABAR

? LASS data

OR

“solution 1”

“solution 2”

)0*(Kp

0S 0<dm

)d-d(d

KmKm =π

Physical solution must have negative slope around m(K*)

(δσ−δ

0)/π

mKπ (GeV/c2)

Page 37: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

cos(2ß) with B0? J/? K*0(KSp 0) – result

• cos(2ß) from 104 tagged B0? J/ψ(KSπ0)*0 decays

• Now quantify probability that sign of cos(2β) >0– Use MC approach to include non-Gaussian effects

with floating sin(2ß)

0.570.1)sin(2ß.)(27.0.)(32.3)cos(2ß 76.0

96.0

±−=±= +

− syststat .)(27.0.)(72.2)cos(2ß 50.079.0 syststat ±= +

with sin(2ß) fixed to 0.731

distribution of cos(2ß) results from a set of 2000 data-sized Monte Carlo

samples, generated with cos(2ß)=0.68

Negative value ofcos(2β) excludedat 86.6% CL

hep-ex/0411016

Page 38: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Standard Model interpretation

η

ρMethod as in Höcker et al, Eur.Phys.J.C21:225-259,2001

1

2

4

3

Measurement of sin(2β)now real precision testof Standard Model

Results are still statistics dominated and will be for the foreseeable future

Solutions 2 & 4 excluded at 86.6% CL

Page 39: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Switching from charmonium to penguin modes

• Golden mode B0 à J/ψ KS now precision measurement of CKM CPV– But CPV also a good place to look for signs of new physics

– ‘New Physics’ couplings are expected to have non-zero phases, and may cause deviations in measured CPV

• Good place to look for new physics are loop diagrams– Loop diagrams are dominated by heavy particles in the loop à contribution

of new physics may be non-negligible

– Look at decay modes where loop diagram is leading order: bàs penguins

b s

, ,u c t, ,g Z γ

tb tsV V∗

s

dd

s φ

0K

bàs penguin decay (φweak=0)charmonium decay (φweak=0) new physics?

φ

K0

Page 40: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Switching from charmonium to penguin modes

• Measurement works otherwise as usual– Interfere decay amplitude with mixing + decay amplitude

– Also works with several other decay amplitudes (η’K0, f0K0,…)

• Leading order SM for CPV is same as golden modes– But not all modes are as clean as B0 à J/ψ KS golden mode, so

– Watch for other SM decay amplitudes that contribute, e.g.

b s

, ,u c t, ,g Z γ

tb tsV V∗

s

dd

0K

b s

, ,u c t, ,g Z γ

tb tsV V∗

s

dd

0K

φ=0 φ=0

b

dg

u0B

d

ss

W −γλ∗ −∝ 4~ i

ub us uV V R e

0Ks

, φφ = γ!

But highly suppressedas |Vub| tiny

φ=2β

Page 41: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Penguin olympia – ranking channels by SM pollution

Bro

nze

Silv

erG

old

b

dg

t0B

d

ss

s

W − 2~tb tsV V λ∗∝

0K

0', fη

0K

b

dg

t

d

ss

s

W −

0B

2~tb tsV V λ∗∝

b

dg

t0B

d

ds

d

W −

2~tb tsV V λ∗∝0 0, ,π ρ ω

0K

2( )~ 5%

λΟ

~ 10%

2( / )~ 20%

λ λΟ

λ λΟ +2( (1 / ))qqf

b

dg

u0B

d

ss

W −γλ∗ −∝ 4~ i

ub us uV V R e

γλ∗ −∝ 4~ iub us uV V R e

W −b

d0B

d

uu

0', fη

s 0K

0Ks

γλ∗ −∝ 4~ iub us uV V R e

W −b

d0B

d

uu 0 0, ,π ρ ω

s 0K

Decay amplitude of interest SM PollutionNaive (dimensional) uncertainties on sin2β

Note that within QCD Factorization these uncertainties turn out to be much smaller !

φ φ

Page 42: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Selecting penguin decays – Experimental issues

• From an experimental point of view, penguin decays are more difficult to select– Signal branching fraction O(20) times smaller

– Particle identification more challenging (high-p K± PID vs l± PID)

• Basic fit strategy same as for J/ψ KS except– Strong DIRC Particle ID to separate

pions from kaons

– Event shape monomials (L0,L2), and B kinematics optimally combined in Multivariate Analyzer [MVA]

• Neural Network (NN) or Fisher Discriminant

– 6-dimensional ML fit using (1) beam-energy substituted B mass (mES), (2) B-energy difference (∆E), (3) the resonance mass,(4) the resonance decay angle, (5) the Multivariate Analyzer, and (6) ∆t

Cherenkov PID performance

Page 43: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Selection of ‘golden penguin mode’ B0 → φ K0

• Modes with KS and KLare both reconstructed

0 0LB Kφ→0 0

SB K K Kφ π π+ − + −→ →

114 ± 12 signal events 98 ± 18 signal events

full backgroundcontinuum bkg

(Opposite CP)

Plots shown are ‘signal enhanced’ through a cut on the likelihood on thedimensions that are not shown, and have a lower signal event count

0K

b

dg

t

d

ss

s

W −

[ ],

CPK Kφ + −

hep-ex/0502019

Page 44: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

CP analysis of ‘golden penguin mode’ B0 → φ K0

0tagB

0tagB

0tagB

0tagB

S(φKS) = +0.29 ± 0.31(stat) S(φKL) = -1.05 ± 0.51(stat)

0

0

0.07 0.040.50 0.25

0.00 0.23 0.05K

K

S

φ

+−= +

±+

±

±=

Combined fit result(assuming φKL and φKS have opposite CP)

Standard Model Prediction

S(φK0) = sin2β = 0.72 ± 0.05

C(φK0) = 1-|λ| = 0

0.9σ

0 0LB Kφ→0 0

SB K K Kφ π π+ − + −→ → (Opposite CP)

ηφK0×

Page 45: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Reaching for more statistics – B0 → φ K0 revisited

• Analysis does not require that ss decays through φ resonance, it works with non-resonant K+K- as well– 85% of KK is non-resonant – can select clean and high statistics sample

– But not ‘golden’ due to possible additional SM contribution with ss popping

• But need to understand CP eigenvalue of K+K-KS: – φ has well defined CP eigenvalue of +1,

– CP of non-resonant KK depends angular momentum L of KK pair

• Perform partial wave analysis– Estimate fraction of S wave (CP even) and P wave (CP odd) and calculate

average CP eigenvalue from fitted composition

0K

b

dg

t

d

ss

s

W −

0BK+K- Nsig = 452 ± 28

(excl. φ res.)

b

d

0B K +

g

t

s

us

u

W − 2~tb tsV V λ∗∝

0Kds

K − b

d

0BK +

s

us

u

W −

0Kds

K −

γλ∗ −∝ 4~ iub us uV V R e

OK Not OK

Page 46: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

CP analysis of B à K+K- KS

• Result of angular analysis

– Result consistent with cross checkusing iso-spin analysis (Belle)

• Result of time dependent CP fit

2

-even 2 2 0.89 0.08 0.06sCP

s p

Af

A A= = ± ±

+

0 0

-even 0 0

2 ( )0.75 0.11

( )S S

CP

B K K Kf

B K K K

+ +

+ −

Γ →= = ±

Γ →

0

0

0.42 0.17 0.04

0.10 0.14 0.06S

S

K K K

K K K

S

C

+ −

+ −

± ±

+ ±

= −

±=

ηf×SK+K-KS/(2fCP-even-1)] =

+0.55 ±0.22 ± 0.04 ±0.11(stat) (syst) (fCP-even)

Page 47: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The Silver penguin modes: B0 à η’KS & B0 à f0KS

• Large statistics mode

• Reconstruct many modes– η’ → ηπ +π –, ρ0 γ– η → γ γ , π +π –π0

– KS →π +π – ,π0π0

• Modest statistics mode

• CP analysis more difficult– Requires thorough estimate of

CP dilution due to interference in B0 → π +π –KS Dalitz plot

B0 à η’KS B0 à f0(980)KS

Fit finds 819 ± 38 events Fit finds 152 ± 19 events

η −′→ ×0 0 6BR( ) ~ 65.2 10B K

η −′→ ×0 0 6recBR( )~14.9 10SB K

−→ ×0 0 60BR( (980) ) ~ 6.0 10SB f K

hep-ex/0502017 hep-ex/0406040

Page 48: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The Silver penguin modes: B0 à η’KS & B0 à f0KS

B0 à η’KSB0 à f0(980)KS

0

0

0.10.27 0.034

0.100.21 0.03S

S

K

K

S

η

± ±

− ±

= +

±=

00

00

0.32 0.230.95 0.10

0.24 0.31 0.15S

S

f K

f K

S

C

+−= −

= ± ±−

±

sin2β [cc] @ 3.0σ sin2β [cc] @ 0.6σ

ηφK0× ηφK0×

Page 49: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

• Modest statistics mode (BF ≈ 5 x 10-6)

Nsig = 96 ± 14

The bronze penguin modes: B0 à ω KS (New!)

03.056.002.050.0

29.027.0

34.038.0

±±−=±±+=×

CSfη

sin2β [cc] @ 0.7σ

hep-ex/0503018

Page 50: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

The bronze penguin modes: B0 à π0 KS

• Experimentally challenging! – Construct decay vertex, decay time without tracks from primary vertex– Use beam line as constraint

– Use only KS decays with at least 4 hits in the silicon tracker to obtain required precision, ~60% meets requirements

KS

π0

beam line

0 0

0 0

0.30 0.330.35 0.04

0.06 0.18 0.06S

S

K

K

S

π

+−= +

= ± ±+

±sin2β [cc] @ 1.3σ

ηφK0×

hep-ex/0408062

Page 51: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

More vertexing exercises – B0 → KS KS KS

• But wait! If you can vertex B0 à π0KSwith sufficient precision for a time dependent CP fit, then you can alsoanalyze B0 → KS KS KS

– Average Ks momentum lower than in π0KS,larger fraction of events will have SVT hits

• Decay B0 → KS KS KS is ‘golden’penguin – little SM pollution expected

• Result consistent with SM

05.034.0

04.071.028.025.0

38.032.0

±±−=

±±−=

C

SηφK0×

b

d

0BK +

g

t

s

us

u

W − 2~tb tsV V λ∗∝

0Kds

K −sddssd

K0

K0

K0

hep-ex/0502013

Page 52: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Sin2b from bàs penguins – summary of BaBar results

• None if the individual results (except perhaps η’KS) has a sizeable discrepancy with SM– But penguin average 2.8σ away from (cc)s value…

– Note that new physics will generally have different effect on modes – averaging not necessarily sensible…

Page 53: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

sin2b from bàs penguins – World averages

• And the discrepancy becomes more significant in a BaBar/Belle average: 3.7σ– But note that uncertainty due to sub-leading SM contributions are

ignored in this discrepancy statement

– What is SM prediction for sin(2β) various penguin modes?

-ηf×S (‘sin2β’) C (‘direct CPV’)

Average(s-penguin) S = 0.43 ± 0.07 Average(s-penguin) C = -0.021 ± 0.05

Page 54: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Various approaches to predict SM value of sin(2β)peng

• Naïve approach– Calculate relative importance of ‘polluting terms’

using powers of λ, ignore strong phase differences

– Easy, but may not be good enough (for all modes)

• Model calculations– Best limits, but results dependent on models and

model assumptions (e.g. QCD factorization)

– Some models have problems predicting known BFs…

• Flavor symmetry– Relate hadronic processes in bàdqq (tree

dominated) and b àsqq (penguin dominated)

– Assumes SU(3) flavor symmetry, but no other model assumptions

– Limits not yet very good. Need to measure many suppressed BF, but will improve over time

~0.2~0.3

0.13±0.07

0.025±0.012±0.01

~0.3~0.06

∆S(π0KS)∆S(φKS)

‘Gold’ ‘Bronze’

[Kirkby,Nir, Phys. Lett. B592 (PDG review)][Hoecker, hep-ex/0410069]

[Beneke, Buchalla, Neubert, Sachrajda, NPB591][Buras,Fleischer,Recksiegel,Schwab, NPB697][Ciuchini at al.,hep-ph/0407073]

[Grossman, Isidori, Worah, Phys Rev D58][Grossman, Liget, Nir, Quinn, Phys Rev D68][Gronau, Rosner, Phys.Lett. B564]

[Gronau, Grossman, Rosner, Phys.Lett.B579][Gronau, Rosner, Zupan, Phys.Lett.B596][Chiang,Gronau,Rosner,Suprun, Phys.Rev.D70]

Page 55: Measurement of sin2b - Nikhefverkerke/talks/cern_seminar... · Wouter Verkerke, NIKHEF • In the Standard Model, the CKM matrix elements V ij describe the electroweak coupling strength

Wouter Verkerke, NIKHEF

Summary

• Precise measurement of sin(2β) from charmonium KSevents

• Measurement of sin(2β) from bàs penguin decays

• Belle/BaBar combined results show an apparent discrepancy of 3.7σ between these results– Present challenge to theorists and experimentalists: Is the

apparent discrepancy real?

sin2ßccs = 0.722 ± 0.040 (stat) ± 0.023 (sys)

⟨sin2ß⟩peng = 0.45 ± 0.09