Mean-field evolution of fermions with Coulomb interaction€¦Mean-field evolution of fermions...

69
Mean-field evolution of fermions with Coulomb interaction Chiara Saffirio Universit ¨ at Z ¨ urich in collaboration with M. Porta, S. Rademacher and B. Schlein Munich, March 30-April 1, 2017. Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 1 / 11

Transcript of Mean-field evolution of fermions with Coulomb interaction€¦Mean-field evolution of fermions...

Mean-field evolution of fermionswith Coulomb interaction

Chiara Saffirio

Universitat Zurich

in collaboration withM. Porta, S. Rademacher and B. Schlein

Munich, March 30-April 1, 2017.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 1 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

General goal: study the dynamics of the low energy states

i∂tψN,t = HNψN,t ,ψN,0 = ψN .

N is large =⇒ look for scaling regimes in which the evolution can be wellapproximated by an effective dynamics.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Scaling?

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

HN =N∑

j=1

[−N

23 ∆xj −

N43

|xj |

]+ N

13

N∑i<j

1|xi − xj |

= N43

N∑

j=1

[−N−

23 ∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

HN =N∑

j=1

[−N

23 ∆xj −

N43

|xj |

]+ N

13

N∑i<j

1|xi − xj |

= N43

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ε = N−

13

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

i∂tψN,t = N43

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ψN,t

ε = N−13

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

i∂tψN,t = N43

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ψN,t

Time scaling:

iε∂tψN,t =

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ψN,t ε = N−13

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

SettingConsider a system of N interacting fermions with wave function ψN ∈ L2

a(R3N)

Interaction: V (x) = 1|x|

Motivation: dynamics of large atoms (e.g. electrically neutral atom)

HN =N∑

j=1

[−∆Xj −

N|Xj |

]+

N∑i<j

1|Xi − Xj |

Space variable scaling: Xj = N13 xj

i∂tψN,t = N43

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ψN,t

Time scaling:

iε∂tψN,t =

N∑

j=1

[−ε2∆xj −

1|xj |

]+

1N

N∑i<j

1|xi − xj |

ψN,t ε = N−13

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 2 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj | minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj |

minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj | minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj | minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj | minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Effective evolution equation?

Ground state ' Slater determinant (Bach ’92, Graf & Solovej ’94)

ψSlater(x1, . . . , xN) =1√N!

det(fj (xi ))i,j≤N , fjj≤N o.n.s. in L2(R3).

Reduced one-particle density matrix:

ωN = N tr2...N |ψSlater〉〈ψSlater| =∑N

j=1 |fj〉〈fj | minimiser of the HF energy

EHF(ωN) = Tr (−∆ + Vext)ωN +1

2N1/3

∫dx dy

1|x − y |

[ρ(x)ρ(y)− |ωN(x ; y)|2]

where ρ(x) = 1NωN(x ; x).

Dynamics =⇒ γ(1)N,t = N tr2...N |ψN,t〉〈ψN,t | ' ωN,t

ωN,t solution to the time dependent Hartree-Fock eqn

iε∂tωN,t = [−ε2∆xj + 1|·| ∗ ρt − Xt , ωN,t ]

with Xt (x ; y) = 1N

1|x−y|ωN,t (x ; y).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 3 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.

Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .

Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.

Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 4 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 5 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 5 / 11

Our result

TheoremLet ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N andtr (−ε2∆)ωN ≤ CN.Let ωN,t be a solution to the TDHF equation with initial data ωN .Assume there exist T > 0, p > 5, C > 0 such that ∀ t ∈ [0,T ]

‖ρ|[x,ωN,t ]|‖L1 ≤ CNε , ‖ρ|[x,ωN,t ]|‖Lp ≤ CNε .

Let ψN ∈ L2a(R3N) be s.t. its one-particle reduced density matrix γ(1)

N satisfies

tr |γ(1)N − ωN | ≤ CNα , α ∈ [0,1) .

Consider the evolution ψN,t = e−itHN/εψN and γ(1)N,t the corresponding

one-particle reduced density matrix.Then for every δ > 0, there exists C > 0 s.t.

tr |γ(1)N,t − ωN,t | ≤ C(t)(Nα + N11/12+δ) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 5 / 11

Remarks

Reduce the many-body problem to a PDE problem

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

ρ|[x,ωN ]| = O(Nε)

ωN function of (x − y) decaying at distance |x − y | ε.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

ρ|[x,ωN ]| = O(Nε)

ωN function of (x − y) decaying at distance |x − y | ε.

N dependence in the HF equation

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

ρ|[x,ωN ]| = O(Nε)

ωN function of (x − y) decaying at distance |x − y | ε.

N dependence in the HF equation: N →∞?

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

ρ|[x,ωN ]| = O(Nε)

ωN function of (x − y) decaying at distance |x − y | ε.

N dependence in the HF equation: N →∞?The Vlasov equation is the next degree of approximation.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Remarks

Reduce the many-body problem to a PDE problem

Translation invariant states

Λ box with periodic b.c. =⇒ ωN,t (x ; y) ' ωN,t (x − y)

[x , ωN,t ] and |[x , ωN,t ]| translation invariant =⇒ ρ|[x,ωN,t ]| ≡ const

ρ|[x,ωN ]| = O(Nε)

ωN function of (x − y) decaying at distance |x − y | ε.

N dependence in the HF equation: N →∞?The Vlasov equation is the next degree of approximation.The Wigner transform of ωN,t for N →∞ solves the Vlasov equation

∂tWt (x , v) + v · ∇xWt (x , v) = ∇(V ∗ ρt )(x) · ∇v Wt (x , v)

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 6 / 11

Previous results

1980: Narnhofer and Sewell (convergence to Vlasov for analyticpotentials);1982: Spohn (extension to C2 potentials);

2003: Elgart, Erdos, Schlein, Yau (TDHF short times, analytic pot.);other scalings:

I 2002: Bardos, Golse, Gottlieb, Mauser;I 2010: Frohlich, Knowles;

2013: Benedikter, Porta, Schlein (larger class of pot., all times);2015: Benedikter, Jaksic, Porta, S., Schlein (mixed states);2016 Coulomb potential with different scalings:

I Bach, Breteaux, Petrat, Pickl, Tzaneteas;I Petrat, Pickl.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 7 / 11

Previous results

1980: Narnhofer and Sewell (convergence to Vlasov for analyticpotentials);1982: Spohn (extension to C2 potentials);2003: Elgart, Erdos, Schlein, Yau (TDHF short times, analytic pot.);

other scalings:I 2002: Bardos, Golse, Gottlieb, Mauser;I 2010: Frohlich, Knowles;

2013: Benedikter, Porta, Schlein (larger class of pot., all times);2015: Benedikter, Jaksic, Porta, S., Schlein (mixed states);2016 Coulomb potential with different scalings:

I Bach, Breteaux, Petrat, Pickl, Tzaneteas;I Petrat, Pickl.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 7 / 11

Previous results

1980: Narnhofer and Sewell (convergence to Vlasov for analyticpotentials);1982: Spohn (extension to C2 potentials);2003: Elgart, Erdos, Schlein, Yau (TDHF short times, analytic pot.);other scalings:

I 2002: Bardos, Golse, Gottlieb, Mauser;I 2010: Frohlich, Knowles;

2013: Benedikter, Porta, Schlein (larger class of pot., all times);2015: Benedikter, Jaksic, Porta, S., Schlein (mixed states);2016 Coulomb potential with different scalings:

I Bach, Breteaux, Petrat, Pickl, Tzaneteas;I Petrat, Pickl.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 7 / 11

Previous results

1980: Narnhofer and Sewell (convergence to Vlasov for analyticpotentials);1982: Spohn (extension to C2 potentials);2003: Elgart, Erdos, Schlein, Yau (TDHF short times, analytic pot.);other scalings:

I 2002: Bardos, Golse, Gottlieb, Mauser;I 2010: Frohlich, Knowles;

2013: Benedikter, Porta, Schlein (larger class of pot., all times);2015: Benedikter, Jaksic, Porta, S., Schlein (mixed states);

2016 Coulomb potential with different scalings:I Bach, Breteaux, Petrat, Pickl, Tzaneteas;I Petrat, Pickl.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 7 / 11

Previous results

1980: Narnhofer and Sewell (convergence to Vlasov for analyticpotentials);1982: Spohn (extension to C2 potentials);2003: Elgart, Erdos, Schlein, Yau (TDHF short times, analytic pot.);other scalings:

I 2002: Bardos, Golse, Gottlieb, Mauser;I 2010: Frohlich, Knowles;

2013: Benedikter, Porta, Schlein (larger class of pot., all times);2015: Benedikter, Jaksic, Porta, S., Schlein (mixed states);2016 Coulomb potential with different scalings:

I Bach, Breteaux, Petrat, Pickl, Tzaneteas;I Petrat, Pickl.

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 7 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators:

∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉

=⇒ tr γ(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofFock space representation:

F =⊕n≥0

L2a(R3n)

creation and annihilation operators: ∀ f ∈ L2(R3)

a∗(f ) =

∫dx f (x) a∗x a(f ) =

∫dx f (x) ax

number of particle operator:

N =

∫dx a∗x ax

second quantisation of J, operator on L2(R3)

dΓ(J) =

∫∫dx dy J(x ; y) a∗x ay

Let Ψ ∈ F ,

γ(1)Ψ (x ; y) = 〈Ψ, a∗x ay Ψ〉 =⇒ tr γ

(1)Ψ = 〈Ψ, NΨ〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 8 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈 e−iHN t/εRωN Ω , a∗x ay e−iHN t/εRωN Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉= 〈UN(t) Ω , R∗ωN,t

a∗x ay RωN ,t UN(t) Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉= 〈UN(t) Ω , R∗ωN,t

a∗x RωN ,t R∗ωN,tay RωN ,t UN(t) Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉= 〈UN(t) Ω , R∗ωN,t

a∗x RωN ,t R∗ωN,tay RωN ,t UN(t) Ω〉

= 〈UN(t)Ω, [a∗(1− ωt,x ) + a(ωt,x )][a(1− ωt,y ) + a∗(ωt,y )]UN(t)Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉= 〈UN(t) Ω , R∗ωN,t

a∗x RωN ,t R∗ωN,tay RωN ,t UN(t) Ω〉

= 〈UN(t)Ω, [a∗(1− ωt,x ) + a(ωt,x )][a(1− ωt,y ) + a∗(ωt,y )]UN(t)Ω〉= ωN,t (x ; y) + terms in normal order

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proofBogoliubov transformation:ωN =

∑Nj=1 |fj〉〈fj |, fjj≤N o.n.s. in L2(R3).

RωN : F → F unitary implementor of a Bolgoliubov transformation

RωN Ω = a∗(f1) . . . a∗(fN) Ω

s.t. ∀ g ∈ L2(R3), R∗ωNa∗(g)RωN = a∗((1− ωN) g) + a(ωN g) .

Compute γ(1)N,t :

γ(1)N,t (x ; y) = 〈RωN,t R

∗ωN,t

e−iHN t/εRωN Ω , a∗x ay RωN,t R∗ωN,t

e−iHN t/εRωN Ω〉= 〈UN(t) Ω , R∗ωN,t

a∗x RωN ,t R∗ωN,tay RωN ,t UN(t) Ω〉

= 〈UN(t)Ω, [a∗(1− ωt,x ) + a(ωt,x )][a(1− ωt,y ) + a∗(ωt,y )]UN(t)Ω〉= ωN,t (x ; y) + terms in normal order

tr |γ(1)N,t − ωN,t | . 〈UN(t) Ω , N UN(t) Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 9 / 11

Idea of the proof

Control on the fluctuations

Bound on the expected number of excitations of the Slater determinant

〈UN(t)Ω , N UN(t)Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 10 / 11

Idea of the proof

Control on the fluctuations

Bound on the expected number of excitations of the Slater determinant

〈UN(t)Ω , N UN(t)Ω〉

To control fluctuation: Gronwall type estimate

iεddt〈UN(t)Ω,NUN(t)Ω〉 = . . .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 10 / 11

Idea of the proof

Control on the fluctuations

Bound on the expected number of excitations of the Slater determinant

〈UN(t)Ω , N UN(t)Ω〉

To control fluctuation: Gronwall type estimate

iεddt〈UN(t)Ω,NUN(t)Ω〉

=4i Im1N

∫∫dx dy

1|x − y |

〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

+ 〈UN(t)Ω, a∗(1− ωt,y )a∗(ωt,y )a∗(ωt,x )a(ωt,x )UN(t)Ω〉

+ 〈UN(t)Ω, a∗(1− ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 10 / 11

Fefferman – de la Llave representation

(?)1N

∫dx dy

1|x − y |

〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

Smooth version of Fefferman–de la Llave representation for the Coulombpotential:

1|x − y |

= C∫ ∞

0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y) , χ(r ,z)(x) = e−|x−z|2/r2

Insert it in (?):

CN

∫dx dy

∫ ∞0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y)

× 〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

=CN

∫ k

0dr∫

dx dy dz · · ·+ CN

∫ ∞k

dr∫

dx dy dz . . .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 11 / 11

Fefferman – de la Llave representation

(?)1N

∫dx dy

1|x − y |

〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

Smooth version of Fefferman–de la Llave representation for the Coulombpotential:

1|x − y |

= C∫ ∞

0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y) , χ(r ,z)(x) = e−|x−z|2/r2

Insert it in (?):

CN

∫dx dy

∫ ∞0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y)

× 〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

=CN

∫ k

0dr∫

dx dy dz · · ·+ CN

∫ ∞k

dr∫

dx dy dz . . .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 11 / 11

Fefferman – de la Llave representation

(?)1N

∫dx dy

1|x − y |

〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

Smooth version of Fefferman–de la Llave representation for the Coulombpotential:

1|x − y |

= C∫ ∞

0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y) , χ(r ,z)(x) = e−|x−z|2/r2

Insert it in (?):

CN

∫dx dy

∫ ∞0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y)

× 〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

=CN

∫ k

0dr∫

dx dy dz · · ·+ CN

∫ ∞k

dr∫

dx dy dz . . .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 11 / 11

Fefferman – de la Llave representation

(?)1N

∫dx dy

1|x − y |

〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

Smooth version of Fefferman–de la Llave representation for the Coulombpotential:

1|x − y |

= C∫ ∞

0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y) , χ(r ,z)(x) = e−|x−z|2/r2

Insert it in (?):

CN

∫dx dy

∫ ∞0

drr5

∫dz χ(r ,z)(x)χ(r ,z)(y)

× 〈UN(t)Ω, a(ωt,x )a(ωt,y )a(1− ωt,y )a(1− ωt,x )UN(t)Ω〉

=CN

∫ k

0dr∫

dx dy dz · · ·+ CN

∫ ∞k

dr∫

dx dy dz . . .

Chiara Saffirio (UZH) Macroscopic Limits of Quantum Systems Munich, March 30-April 1, 2017. 11 / 11