Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA...

33
1 EVA 2007 Maximum Likelihood Estimation for Maximum Likelihood Estimation for α α - - Stable Stable AR and AR and Allpass Allpass Processes Processes Beth Andrews Northwestern University Matt Calder PHZ Capital Partners Richard A. Davis Columbia University (http://www.stat.columbia.edu/~rdavis)

Transcript of Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA...

Page 1: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

1EVA 2007

Maximum Likelihood Estimation for Maximum Likelihood Estimation for αα--Stable Stable AR and AR and AllpassAllpass Processes Processes

Beth AndrewsNorthwestern University

Matt CalderPHZ Capital Partners

Richard A. DavisColumbia University

(http://www.stat.columbia.edu/~rdavis)

Page 2: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

2EVA 2007

Blood!Blood!

Page 3: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

3EVA 2007

1. Motivating Example

day

log-

volu

me

0 50 100 150 200 250

15.0

15.5

16.0

16.5

17.0

Log(volume) of Walmart stock 12/1/03-12/31/04

Page 4: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

4EVA 2007

1. Motivating Example (cont)

lag (h)

acf

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

pacf

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Analysis suggests that {Xt} follows an AR (1) or AR(2).

A causal AR(2) fit is

Xt = .4455 Xt-1 + .1025 Xt-2 + Zt

Are the estimated residuals iid?

Page 5: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

5EVA 2007

Analysis of residuals from causal AR(2) fit

lag (h)

acf o

f squ

ares

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

acf o

f abs

val

ues

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

acf

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

pacf

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0ACF + PACF imply data uncorrelated

ACFs of abs values and squares imply data dependentExample of data from an allpass model

Page 6: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

6EVA 2007

Game Plan

1. Motivating example: Wal-Mart volume

2. Setup

AR models

Allpass models

Stable noise

3. Maximum likelihood estimation

4. Simulation results

5. Wal-Mart revisited

Page 7: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

7EVA 2007

Assume {Xt} follows an autoregressive model or an allpass model.

AR(p) model:

Xt = φ1 Xt-1 + … + φp Xt-p + Zt, where {Zt} ~ IID

AR polynomial: φ(z)=1−φ1z − … − φpzp , φ(z) ≠ 0 for |z| = 1.

• causal if φ(z) ≠ 0 for |z| ≤ 1, i.e., fcn of past values of Zt

• purely noncausal if φ(z) ≠ 0 for |z| > 1, i.e., fcn of future values of Zt

2. Setup—AR models

jt0j

jt −

=∑= ZX ψ

jt1pj

jt +

+=∑= ZX ψ

Page 8: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

8EVA 2007

2. Setup—AR Models

Zt

Xt

Impulse response: causal & low frequency

jt-j

jt −

∞=∑= ZX ψ

Page 9: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

9EVA 2007

2. Setup—AR Models

Impulse response: noncausal & high frequency

Zt

Xt

jt-j

jt −

∞=∑= ZX ψ

Page 10: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

10EVA 2007

2. Setup—AR Models

Impulse response: mixed causal (low frequency) & noncausal (high frequency)

Zt

Xt

jt-j

jt −

∞=∑= ZX ψ

Page 11: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

11EVA 2007

Causal AR polynomial: φ(z)=1−φ1z − … − φpzp , φ(z) ≠ 0 for |z|≤1.

Define MA polynomial:

θ(z) = −zp φ(z−1)/φp = −(zp −φ1zp-1 − … − φp)/ φp

≠ 0 for |z|≥1 (MA polynomial is non-invertible).

Model for data {Xt} : φ(B)Xt = θ(B) Zt , {Zt} ~ IID (non-Gaussian)

BkXt = Xt-k

Examples:

All-pass(1): Xt − φ Xt-1 = Zt − φ−1 Zt-1 , | φ | < 1.

All-pass(2): Xt − φ1 Xt-1 − φ2 Xt-2 = Zt + φ1/ φ2 Zt-1 + 1/ φ2 Zt-2

2. Setup—Allpass models

Page 12: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

12EVA 2007

Properties: linear process with nonlinear behavior

• causal, non-invertible ARMA with MA representation

• uncorrelated (flat spectrum)

• zero mean

• data are dependent if noise is non-Gaussian

(e.g. Breidt & Davis 1991).

• squares and absolute values are correlated.

• Xt is heavy-tailed if noise is heavy-tailed.

πφσ

πσ

φφ

φω

ω

ωω

22)(

)()( 2

22

22

22

pi

p

iip

Xe

eef ==

jt0j

jtp

1

t )()(

=

∑ψ=φφ−

φ= ZZ

BBBX

p

2. Setup—Allpass models

Page 13: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

13EVA 2007

Properties cont:

• Suppose the time series Xt follows a noncausal AR and/or a non-invertible MA process. For definiteness, suppose {Xt} follows the noninvertible MA model

Xt= θi(B) θni(B) Zt , {Zt} ~ IID.

Step 1: Let {Ut} be the residuals obtained by fitting a purely invertible MA model, i.e.,

So

Step 2: Fit a purely causal AP model to {Ut}

2. Setup—Allpass models

Z(B)~(B)U

). of version invertible theis ~( ,(B)U~(B)

(B)UˆX

tni

nit

ninitnii

tt

θθ

θθθθ≈

θ=

Page 14: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

14EVA 2007

The noise is assumed to have a nonGaussian stable distribution

Noise distribution: {Zt} ~ IID with a stable distribution

That is, Zt has characteristic function given by

where+ exponent α ∈(0,2)

+ symmetry parameter β ∈(-1,1)

+ scale parameter σ > 0 ∈(0,2)

+ location parameter μ.

Density function: inverse Fourier transform

can be computed numerically reasonably quickly (Nolan, `97).

2. Setup—stable noise

})]1|)(|2/tan()sgn(1[||σexp{)}{exp()( 1ααt sissisisZEs μσπαβϕ α +−+−== −

0

dssezf isz∫∞

∞−0

−−= )()2()),,,(;( 1 ϕπμσβα

Page 15: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

15EVA 2007

Remarks:

1. There are a number of parameterizations of a stable distribution (see Zolotarev `86), but this is the one advocated by Nolan `01.

• differentiable wrt to z

• differentiable wrt to the parameter vector (α,β,σ,μ)’

2. Stable distributions have pareto-like heavy tails

3. Location/scale family

4. Unimodal. is unimodal

2. Setup—stable noise (cont)

.)sin()( and )()|(|1

01

−∞−

⎟⎟⎠

⎞⎜⎜⎝

⎛=→> ∫ dtttccxZPx ααα αασ

( ) ( ))0,1,,();(),,,(; 11 βαμσσμσβα −= −− zfzf

( ))0,1,,(; βα•f

Page 16: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

16EVA 2007

Second-order moment techniques do not work (work for causal AR!)

• least squares

• Gaussian likelihood

Higher-order cumulant methods

• Giannakis and Swami (1990)

• Chi and Kung (1995)

Non-Gaussian likelihood methods

• likelihood approximation assuming known density

• quasi-likelihood

Other

• LAD- least absolute deviation

• Rank-based estimation (minimum dispersion)

Estimation for nonCausal and/or All-Pass Models

3. Maximum Likelihood Estimation

Page 17: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

17EVA 2007

Realizations of an invertible and noninvertible MA(2) processesModel: Xt = θ∗(B) Zt , {Zt} ~ IID(α = 1), whereθi(B) = (1 +1/2B)(1 + 1/3B) and θni(B) = (1 + 2B)(1 + 3B)

0 10 20 30 40

-40

-20

020

0 10 20 30 40

-300

-100

010

0

Lag

0 2 4 6 8 10

-0.2

0.2

0.6

1.0

ACF

Lag

0 2 4 6 8 10

-0.2

0.2

0.6

1.0

ACF

Page 18: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

18EVA 2007

Estimation strategies for causal AR models:

• LS estimation (Davis and Resnick `86)

• Maximum Gaussian likelihood (Mikosch, Gadrich, Kluppelberg,

Adler `95)

• LAD- least absolute deviation (special case of M-Estimation)

(Davis, Knight, Liu `92; Davis `96)

3. Estimation for AR Models

Page 19: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

19EVA 2007

Realization from an all-pass model of order 2

(t3 noise )

0 1 0 2 0 3 0 4 0

0.0

0.2

0.4

0.6

0.8

1.0

L a g

AC

F

A C F : (a llp a s s )2

0 1 0 2 0 3 0 4 0

0.0

0.2

0.4

0.6

0.8

1.0

L a g

AC

F

A C F : (a llp a s s )

modelsample

t

X(t)

0 200 400 600 800 1000

-30

-20

-10

010

20

4. Allpass models

Page 20: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

20EVA 2007

Data: (X1, . . ., Xn)

Model:

where φ0r is the last non-zero coefficient among the φ0j’s.

Noise:

where zt =Zt / φ0r.

More generally define,

Note: zt(φ0) is a close approximation to zt (initialization error)

rtpptpt

ptptt

ZZZ

XXX

00101

0101

/)( φφ−−φ−−

φ++φ=

+−−

−−

L

L

),( 01010101 ptptttpptpt XXXzzz −−+−− φ−−φ−−φ++φ= LL

⎩⎨⎧

+=φ−φ++φ++=

=+−

− .1,..., if ,)()()(,1,..., if ,0

)(11 pntXBzz

npntz

ttpptpt φφ

φL

3. MLE—allpass models: approximating the likelihood

Page 21: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

21EVA 2007

Assume that Zt has stable pdf fτ and consider the vector

Joint density of z:

and hence the joint density of the data can be approximated by

where q=max{0 ≤ j ≤ p: φj ≠ 0}.

)')(),...,(),...,(,)(),...,(,,...,( 110101 4444 34444 2144444 344444 21φφφφφ npnpp zzzzzXX +−−−=z

independent pieces

)),(),...,(( ||))((

))(),...,(,,...,()(

121

01011

φφφ

φφ

npn

pn

tqtq

pp

zzhzf

zzXXhh

+−

=

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛•

=

∏ φφτ

z

⎟⎟⎠

⎞⎜⎜⎝

⎛= ∏

=

pn

tqtq zfh

1

||))(()( φφτ φx

Page 22: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

22EVA 2007

Log-likelihood: Let

( )[ ]

( )[ ]∑

=

=

=

=

=

=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

+=

pn

tt

pn

tqqqt

pn

t q

qtq

q

pn

ttq

zf

zf

zf

zfL

1

1

1

1

);(ln

)/|,|/,)sgn(,();(ln

)0,1,,(;/

/)(||ln

|)|ln)),,,();(((ln),(

τ

φμφσβφα

βαφσ

φμσφ

φμσβαφτ

φ

φ

φ

φφ

)'/|,|/,)sgn(,( qqq φμφσβφατ =

Page 23: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

23EVA 2007

One can go through a similar calculation for noncausal AR models.

Model:

Xt = φ1 Xt-1 + … + φp Xt-p + Zt

Zt = (1−φ1 B + … + φp Bp) Xt B=backward shift operator

Zt = (1−θ1 B + … + θr Br) (1−θr+1 B + … + θr+s Bs) Xt

Zt = θ+(B)θ*(B) Xt

where θ+(z) is the good (causal) AR polynomial and θ*(B) is the bad (purely noncausal) AR polynomial.

Likelihood:

3. MLE—noncausal AR models

( )[ ]( )∑+=

>+=n

ptpt sIZfL

1)0(||ln);(ln),( θττ θθ

)'/|,|/,)sgn(,( qqq φμφσβφατ =

Page 24: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

24EVA 2007

Reparameterize: Denote the true parameters by φ0 and τ0 and set

and

which are elements of Rp and R4, respectively. Now the log-likelihood

can be re-expressed as a continuous function on Rp×R4 given by

Note:

( )[ ] ( )[ ]∑∑−

=

=

−−

−−

−++=

−++=pn

tt

pn

tt

n

zfvnunzf

LvnunLvuW

10

1

2/10

/1

02/1

0/1

);(ln);(ln

),(),(),(

0

0

ττ

ττ

α

α

00

00

φφ

φφ

)( )( 02/1

0/1 0 ττφφ −=−= nvnu α

( ) ( ) )ˆ(),ˆ(),(maxargˆ,ˆ 02/1

0/1

,0 ττφφ −−== nnvuWvu nvunn

α

Page 25: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

25EVA 2007

Result: on C(Rp×R4 ), where

• is the Fisher information for a stable density.

• N ~ N(0, I(τ0)) is a normal random vector independent of W.

• W is the process

vvvuWvuW dn )('2')(),( 01 τIN −−+→

[ ]41,

20 )}/();(ln{E:)(

=∂∂∂−=

jijizf ττττI

( ) ( ){ }∑∑∞

= ≠

−− −Γ+=1 0

0,0/11

00/1

0, ;ln;)(||)](~[ln )( 00

k jjkkkjrjk zfucczfuW ττδφσα αα

cj(u) are found through the Laurent series identity

{zk,j} is iid z1,1 =d Z1/φ0r

{δk} is iid P(δk=1) = p = 1 − P(δk=-1).

Γk=E1 + … + Ek, where {Ek} is iid unit exponentials

{zk,j}, {δk}, and {Ek} are mutually independent

[ ]p

kj

kkjj zzzzuzuc

10

100 ))(/())(/(')(

=≠

−−∑ +−= φφ

Page 26: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

26EVA 2007

Deconstructing the limit result and limit process:

The limit process in the following

consists of two independent pieces:

1. W(u) which governs the limit behavior of the AR or AP model parameters φ1,. . . ,φp. Set

2. v’N−2−1v’I(τ0)v which governs the limit behavior of the stable parameters (α,β,σ,μ). Set is equal to

vvvuWvuW dn )('2')(),( 01 τIN −−+→

Theorem: There exists a sequence of maximizers of the likelihood

function such that

and

)(maxarg uWu=ξ

,)('2'max arg 01

v vvv τIN −−=η)).(,0(N~)( 0

10

1 ττ −−= INIη

. )ˆ( )ˆ( 02/1

d0/1 0 ηττξφφ dMLML nn →−→−α

Page 27: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

27EVA 2007

Remarks:

The distribution of ξ is generally intractable. However, one can use bootstrapping techniques (see later example and Davis and Wu `97).

The scaling for the AR parameters is n1/α, which is must faster thanthe standard n1/2 rate.

The limit behavior of the estimates of the stable parameters is the same as for an iid sequence (see DuMouchel `73).

. ))()ˆ( , )ˆ( 002/1

d0/1 0 τα 1ΙΝ(0,ηττξφφ −∼→−→− dMLML nn

3. MLE—allpass models

Page 28: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

28EVA 2007

Simulation setup:

• 300 replicates of a non-causal AR(2) model

Xt = −1.2 Xt-1 + 1.6 Xt-2 + Zt (zeros of AR polyn 1.25, -.5)

• noise distribution is stable with two sets of parameter values:

α = .8 β = .5 σ = 1.0 μ = 0.0 (really heavy!)

α = 1.5 β = .5 σ = 1.0 μ =0.0

• sample sizes n=500

• estimation is maximum likelihood

4. Simulation Results

Page 29: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

29EVA 2007

4. Simulation Results

0.0830.0000.078μ = 0.00.078-0.0060.078μ = 0.0

0.0560.9970.047σ = 1.00.0660.9990.048σ = 1.0

0.1280.5090.121β = 0.50.1280.0100.137β = 0.0

0.0711.4990.070α = 1.50.0691.5020.071α = 1.5

0.0621.598φ2 = 1.60.0651.605φ2 = 1.6

0.078-1.204φ1=−1.20.083-1.212φ1=−1.2

0.064-0.0040.062μ = 0.00.057-0.0020.054μ = 0.0

0.0710.9970.074σ = 1.00.0730.9970.077σ = 1.0

0.0560.5020.058β = 0.50.068-0.0010.067β = 0.0

0.0390.8000.049α = 0.80.0410.7980.051α = 0.8

0.0041.600φ2 = 1.60.0041.600φ2 = 1.6

0.004-1.200φ1=−1.20.004-1.200φ1=−1.2

EmpiricalMean Std Dev

AsympSD

EmpiricalMean Std Dev

AsympSD

Page 30: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

30EVA 2007

5. Walmart revisited---residuals from noncausal model

Analysis of the ACF and PACF of the time series (n=274) suggests that {Xt} follows an AR (1) or AR(2).

A causal AR(2) fit (using Gaussian MLE) is

Xt = .4455 Xt-1 + .1025 Xt-2 + Zt

The estimated residuals were uncorrelated but dependent.

Bootstrap confidence intervals for φ1 and φ2 : (based on Davis and Wu `97)

(-2.5719,-1.4212) (1.4521,2.5743)

Resample size is m=135.

Maximum-likelihood model:

Xt = -2.0766 Xt-1 + 2.0772 Xt-2 + Zt (purely non-causal)

{Zt} ~ IID Stable

α = 1.8335, β = .5650, σ = .4559, μ = 16.0030

lag (h)

acf o

f abs

val

ues

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

acf o

f squ

ares

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Page 31: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

31EVA 2007 theoretical quantiles

empi

rical

qua

ntile

s

14 16 18 20

1416

1820

day

resi

dual

s

0 50 100 150 200 250

1416

1820

5. Walmart—analysis of residuals from noncausal model

lag (h)

acf o

f abs

val

ues

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

lag (h)

acf o

f squ

ares

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

CB’s simulated

CB’s simulated

Page 32: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

32EVA 2007

6th Conference on Extremes: Fort Collins, Colorado June 22-26, 2009

Page 33: Maximum Likelihood Estimation for α-Stable AR and Allpass ...rdavis/lectures/Bern_07.pdf · EVA 2007 3 1. Motivating Example day log-volume 0 50 100 150 200 250 15.0 15.5 16.0 16.5

33EVA 2007

Graybill VIII Conference in 2009VIII Conference in 2009

66thth Conference on Extremes Conference on Extremes

Fort Collins, Colorado Fort Collins, Colorado

June 22June 22-- 26, 200926, 2009