max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i...

23
Seite 1 Institute for Internal Combustion Engines and Thermodynamics Graz · University · of · Technology SC. Otto engine 90 bar n/a p max : 200 bar Large e. Diesel engine 180 bar PC 200 bar Truck 70 65 60 55 50 45 40 35 30 4 6 8 10 12 14 16 18 20 22 Compression ratio ε [–] Efficiency ot the ideal engine η ideal [%] 2 1,6 1,4 1,2 6 4 0,9 0,8 1 Constant volume, aspirated engine Thermodynamic Potential and Limits of IC Engines Univ.-Prof. Dr. Helmut Eichlseder A3 PS Conference Vienna, 18 th 19 th November 2010

Transcript of max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i...

Page 1: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

SC.

Otto engine

90 barn/a

pmax: 200 barLarge e.

Diesel engine

180 barPC

200 barTruck

70

65

60

55

50

45

40

35

304 6 8 10 12 14 16 18 20 22

Compression ratio ε [–]

Eff

icie

ncy

otth

eid

eal engin

ide

al[%

]

21,61,41,2

64

0,9

0,8

1

Consta

ntvolu

me,

aspirate

dengin

e

Thermodynamic Potential and Limits of IC Engines

Univ.-Prof. Dr. Helmut Eichlseder

A3 PS ConferenceVienna, 18th 19th November 2010

Page 2: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 2Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

g Introduction

g Boundary conditions

g Challenges today and tomorrow

• Efficiency

• Emission

• Specific Power

g Additional Chances for the future

g Summary

Thermodynamic Potential and Limits Challenges and risks for IC engines

Page 3: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 3Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Driving more than 99 % of passenger cars

IC engine is one of the most successful

inventions

Production >70 mio.per year

But:

The biggest challenge for ICE

is its success

Today: More than 1000 million IC engines

Page 4: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 4Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

SC.

Gasoline engine

90 barn/a

pmax 200 barLarge e.

Diesel engine

180 barPC

200 barTruck

70

65

60

55

50

45

40

35

30

4 6 8 10 12 14 16 18 20 22

Compression ratio ε [–]

Eff

icie

ncy o

f th

e ideal engin

e η

ide

al[%

]

21,61,41,2

64

0,9

0,8

1

Consta

nt volu

me,

aspirate

d e

ngin

e

Efficiency of the ideal

engine

Thermodynamic boundary conditions

� Constant volume-constant pressure combustion

� Peak pressure limitation

Limit: Efficiency of the ideal engine

λλλλ

Page 5: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 5Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

0

5

10

15

20

25

30

35

40

45

en

gin

e e

ffic

ien

cy [

%]

Efficiency of real enginesEngine Categories - Comparison

MOPED

50 cm³

MOTORCYCLE

800 cm³

PASSENGER CAR

SI

PASSENGER CAR

DIESEL

TRUCK STATIONARY

LARGE ENGINE

best value representative operation (test cycle)

Page 6: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 6Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Efficiency increase by shift of operation point Example Diesel vs. Gasoline: 2.0 dm3 engine in equal vehicle

0

2

4

6

8

10

12

14

16

18

20

22

24

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine speed / min–1

BM

EP

/ b

ar

Operating points NEDC Gasoline

Operating points NEDC Diesel

Full load curve Gasoline

Full load curve Diesel

Mean value Gasoline

Mean value Diesel

Page 7: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 7Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Example: MPI Gasoline engine (λλλλ = 1)

BMEP / bar

Eff

icie

nc

y ηη ηη

, lo

sses ∆

η∆

η∆

η∆

η/

%

∆η∆η∆η∆ηrc ∆η∆η∆η∆ηWH ∆η∆η∆η∆ηGE

0 2 4 6 8 10

∆η∆η∆η∆ηm

ηηηηirc

ηηηηi

ηηηηe

50

40

30

20

10

0

∆η∆η∆η∆ηic Lean Operation

Efficiency increase by de-throttling and load shift

Fully variable

valve train

Cylinder deactivation

Downsizing (Gasoline DI TC,

Diesel 2stage TC)

Electrification/

Hybrid

Page 8: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 8Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

0

5

10

15

20

25

30

35

40E

ffe

cti

ve

Eff

icie

nc

y[%

]Average Otto DI

Average Diesel DI

VW Lupo 1.2 TDI

0

25

50

75

100

125

0 200 400 600 800 1000 1200

Time [s]

Velo

cit

y[k

m/h

]

NEDCArtemis

Urban

Artemis

Road

Effective efficiency of passenger car drivetrains

NEDC ArtemisRoad

ArtemisUrban

EUDCECE 15 4 NEDC

GM Diesel vehicle

GM Fuel Cel vehicle

Source:

von Helmolt, Eberle (GM)

in „Hydrogen Technology“

ISBN: 978-3-540-79027-3

Chassis dynamometer

measurements at TU Graz

Page 9: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 9Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

g Electrification / Hybridization

• Start/Stop

• Shift of operating point

• Energy recovery

• Electric drive in low load/speed

g Thermal management for improved warm up

g Waste heat recovery

Further potential for efficiency improvement

Page 10: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

0Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Increase of system efficiencyWaste heat recovery – Concepts

Lit.: SAE 930880, 1993 (Toyota)

Lit.: SAE 790646, 1979

Thermoelectric generator / source: BMW

Page 11: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

1Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Increase of system efficiency Waste heat recovery – Potential for trucks

Source: Gstrein, FPT (Iveco)

84

88

92

96

100

104

Bas

e tr

uck

T-Com

pound

E-Com

pound

Ran

kine

Stirlin

g

Cool.w

ater

Peltie

r

Co

ns

um

pti

on

[%

]

Page 12: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

2Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

g Introduction

g Boundary conditions

g Challenges today and tomorrow

• Efficiency

• Emission

• Specific Power

g Chances for the future

g Summary

Thermodynamic Potential and Limits Challenges and risks for IC engines

Page 13: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

3Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Diesel passenger car

1985 1990 1995 2000 2005 2010 2015

0 %

50 %

100 %

16.5 g/kmECE R15/04

CO

7.4

2.721.0 0.64 0.5 0.5 0.5 0.62

2004

CO

0 %

50 %

100 %

5.1 g/kmECE R15/04

HC + NOx

1.97

0.97 0.7 0.56 0.3 0.23 0.17 0.012

NOx

0.08

NOx

0 %

50 %

100 %

0.27 g/km88/436/EEC

PM

EU1 EU2 EU3 EU4 EU5 EU6

0.14

0.080.05

0.0250.005 0.0045 0.0062

SULEV

PM

EU6

Emission – standards

98%

97%

97%

Example: Passenger car diesel engines

Page 14: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

4Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

0

1

2

3

4

5

6

7

8

9

10

HC

-Ko

nz

en

tra

tio

n [

mg

/m3

]

SULEVSULEV

9.99.9

Incl. Incl. coldcold startstart

Immission

Tunnel

Urban Area

After warm upAfter warm up

Rural Area

0.5

Emission LegislationSULEV HC Emission and Immission

HC

–co

ncen

trati

on

[m

g/m

³]

Page 15: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

5Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

g Introduction

g Boundary conditions

g Challenges today and tomorrow

• Efficiency

• Emission

• Specific Power

g Chances for the future

g Summary

Challenges and risks for IC engines

Thermodynamic Potential and Limits

Page 16: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

6Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

BMEP of NA and Supercharged Engines

Passenger car engines

BM

EP

/ b

ar

0

5

10

15

20

25

30

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Pe /kW/l

Engine speed / min–1

1000 2000 3000 4000 5000 6000 7000 8000

Mercedes 250CDI (MY09)BMW 740d (MY10)

Porsche 911 GT3 (MY08)Toyota Aygo 1.0 (MY06)

Porsche 911 GT2 RS (MY10)VW Golf 1.4 TSI (MY06)

Page 17: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

7Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Specific power – potential Gasoline

Turbo-charging

� Wide application

� Synergy with DI

� Downsizing possible

� Cost efficient

Specific power >700 kW/l Durability 3 laps (qualifying)

Source: Audi

Speed

Source: BMW

Specific power 140 kW/l in series(motorcycle)

� Exclusive applications

� Excellent transient behaviour

� Sport- and racing vehicles

� High effort

Page 18: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

8Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Source: MTU

Source: MTU

- High speed concept not possible due to combustion speed

- Increase of supercharging possible

also as two stage TC

no thermodynamic limit obvious, mechanic and

thermal limit

- Example for complex and effective

turbocharging: power boats and

military applications

- Spec. power 100 kW/l

in series production

Specific power – potential Diesel

Page 19: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 1

9Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

g Introduction

g Boundary conditions

g Challenges today and tomorrow

• Efficiency

• Emission

• Specific Power

g Additional Chances for the future

g Summary

Thermodynamic Potential and Limits Challenges and risks for IC engines

Page 20: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 2

0Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Alternative fuels Assessment

� Increasing share and variety, but no single „patent“ solution

Use

of e

xist

ing

Infr

astr

ucture

Applic

atio

n on

engin

eEnvi

ronm

ent

(Gre

enhouse

)Envi

ronm

ent

(Loca

l)

Rem

arks

Bio Diesel ++ +(PM-Filter)

+(-50%)

020% blending expected

until 2020

Ethanol ++ + + 0Blending,

Sugar Cane+

Natural Gas - +(knock resist.)

+(-25%)

+ (D)

0 (G)Fossil Fuel; Operation Range

BTL

(Biomass to Liquid)- ++ 0/+ (+) Energy demand for production

Biogas -- + ++ 0 similar to natural gas

Vegetable Oil - - + - Limited Availability

Hydrogen -- + ++(renewable)

++ Energy Carrier !; ICE + FC

Electric Energy - ++(renewable)

++ Based on renewable energy

Auto Gas (Propane) o o/-+

(-10%)

+ (D)

0 (G)Fossil Fuel

Page 21: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 2

1Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Concept Vehicle TU Graz/HyCentAMulti Fuel

Multivalent with

Methane, Biogas and Hydrogenin one Fuel System and

Gasoline

Page 22: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 2

2Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Summary

g Essential efficiency improvement by advanced combustion concepts in combination with load shift technologies (downsizing) possible

g Technology variety of SI engines continued (TC, MPI/DI, cyl. deactivation, VVT, DI stratified), key technologies will be turbocharging+DI

g Electrification of ICE (mainly Mild Hybrid) increasing

g Remarkable potential of Energy management (warm up, use of wasteenergy) and friction reduction

g Important challenge is reduction of CO2 fleet-emission, EU target of 95 g/km (2020) seems feasible (and most effective) with „reasonable“(cost-efficient) ICE

g IC engine with „zero impact“ toxic emissions possible (λλλλ=1 gasoline)

g ICE gives excellent base for Alternative Fuels

g ICE for > 20 years dominating propulsion system

Conclusions

Page 23: max Thermodynamic Potential and Limits of IC Engines · 2016. 2. 5. · G r a z · U n i v e r s i t y · o f · T e c h n o l o g y SC. Gasoline engine 90 bar n/a p max 200 bar Large

Seit

e 2

3

Institute for Internal Combustion Engines and Thermodynamics

G r a z · U n i v e r s i t y · o f · T e c h n o l o g y

Laderm.

OttomotorenOttomotoren

90 barSaugm.

ppmaxmax:: 200 barGroßm.

DieselmotorenDieselmotoren

180 barPKW

200 barLKW

7070

6565

6060

5555

5050

4545

4040

3535

303044 66 88 1010 1212 1414 1616 1818 2020 2222

VerdichtungsverhVerdichtungsverhäältnisltnis εεεεεεεε [[--]]

Wir

ku

ng

sg

rad

des v

ollko

mm

en

en

Mo

tors

W

irku

ng

sg

rad

des v

ollko

mm

en

en

Mo

tors

hhvv

[%]

[%]

221,61,61,41,41,21,2

6644

0,0,

99

0,80,8

11

Gle

ich

rau

mG

leic

hra

um

, , S

au

gm

oto

rS

au

gm

oto

r

Thank you foryour attention

contact: [email protected]