Matti Hotokka Department of Physical Chemistry...

24
Jyväskylä 2008 Atoms Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Transcript of Matti Hotokka Department of Physical Chemistry...

Page 1: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

AtomsMatti Hotokka

Department of Physical ChemistryÅbo Akademi University

Page 2: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Dark lines in the sun’s spectrum

� First observed by Wollaston 1802

� Rediscovered by Fraunhofer 1814Fraunhofer’s notation is used still today

What is seen?

FC f h

Page 3: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Fraunhofer’s notationA few examples of lines

Symbol Atom Wavelength [nm]C H 656.3D Na 589.6 & 589.0F H 486.1

A (band) O2 760B (band) O2 687E Fe 527.0b Mg 518.4 & 517.3c Fe 495.8f H 434.0g Ca 422.7h H 410.2H Ca 396.8

See http://www.harmsy.freeuk.com/fraunhofer.html

Page 4: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

λ =−

=nn

G n2

2 43 4 5, , , �

1 4 12

1 12

1 3 4 52 2 2 2λ= −

��

��

�= −

��

��

=G n

Rn

nH , , , �Discovered by Wollaston/FraunhoferMathematical formulation by JohannBalmer in 1885

Balmer series

Generalised by Johannes Rydberg 1888

Rydberg’s constant RH = 109 668 cm-1.

Page 5: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Rutherford (1911)

Classical physicsBohr (1913)

Non-classical particlesDeBroglie (1925)

Electrons as standing wavesSchrödinger and Heisenberg (1926, 1925)

Modern quantum theory

Atom modelsReasonably accurate models

Page 6: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Electrons follow only certain paths (orbits)Energy is absorbed/emitted at transitionsfrom one orbit to another. Transitionenergy is EEmitted frequency is E/hCoulomb attraction and centrifugal forceThe electron’s energy is a multiple of ½h ,

= circulation frequency

Bohr

Page 7: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

E m en hn

e= −4

2 2028 ε

∆E m eh n

e= −

��

��

�4

202 2 28

12

Energy of the electron

Bohr

(Or �)

Transition energy from level 2 to level nModern quantum theory gives the same answer.

Page 8: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Modern quantum theory

1s

3s

2p2s

3p 3d

Hydrogen atom only: The orbitalenergy depends only on theprincipal quantum number n.

Page 9: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

What is seen?

Lyman 121.58 nm102.58 nm97.26 nm

Balmer 656.53 nm486.32 nm434.21 nm

Paschen 1.8758 �m1.2822 �m1.0942 �m

Brackett 2467.5 cm-1

3807.9 cm-1

4616.1 cm-1

Pfund 1304.4 cm-1

2148.6 cm-1

2673.1 cm-1

In the visible

Page 10: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Almost like hydrogen: one valence nselectronDifference: 2s and 2p have differentorbital energies; likewise 3s, 3p and 3d etc

Alkali metals

Page 11: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

0

-1

-2

-3

-4

-5

-6

0

-10000

-20000

-30000

-40000

-50000

2 S 2 P 2 D 2 F

2s

3s

4s

5s

6s

2p

3p

4p

5p

6p

3d

4d

5d6d7d

4f

5f6f7f

671

323

274256

813

497

427399

611

460413

1870

Principal

Diffuse

Sharp

FundamentalEnergy levelsand transitionsof lithium

Selection rule:qn � goes to

�+1 or �-1

Page 12: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

M L

MJL

Spectral terms

M = 2S+1 = spin multiplicity; S = total electronic spin

L = total orbital angular quantum number

Can be calculated in several ways. However, this may betrickier than for molecules because atomic orbitals mayincorporate more degenerate electrons.

Sum of spin and orbital angular momenta, J, may be added. It is important if relativistic effects need to be considered.

Page 13: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

The totally filled orbitals may be ignored.

Spectral termsFor a few simple cases

Page 14: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Previously: � = ±1Quite strict rule: S = 0

More selection rules

Page 15: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Relativity splits levels that should have thesame energy

Sodium energy levels

E

3s 2 S1/2

0.0

3p 2 P1/216956.183

3p 2 P3/216973.379

589.7554 nm589.1579 nm

E

3p 2 P1/216956.183

3p 2 P3/216973.379

4d 2 D5/234548.754

4d 2 D3/234548.789

568.4206 nm568,9768 nm568.9779 nm

Page 16: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Emission spectrum of sodium

Page 17: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

The orbital angular momenta of the twoelectrons are combined as a vector sumThe spin angular momenta likewise

� Two electrons give a singlet or a triplet state

Many-electron atom: helium

S=0

� � � �S=1 S=1

� � � �

S=1

Page 18: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

0

-1

-2

-3

-4

-5

0

-10000

-20000

-30000

-40000

1 S 1 P 0 1 D 1 F 0 3 S 3 P 0 3 D 3 F 0

1s 2

2s; metastable state

2s2p

2p

3s3s 3p 3d3d3p

4s4s 4p 4d4d 4f4f4p5s

58.4 nm

2058

728

505

668

492

502

1870

1083

389

319707

471588

447

1869

Helium: Two completelyseparate sets of levels, onefor singlet and one for triplet.

Page 19: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Electron configuration

� E.g., N: (1s)2 (2s)2 (2p)3

Atoms generally

� [J]

-6.81x10-17

-2.47x10-18

-4.12x10-18

1s

2px, 2py, 2pz

2s

Page 20: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Electronic statesNitrogen atom

E

(1s)2(2s)2(2p)2(3p)

(1s)2(2s)2(2p)3

(1s)2(2s)2(2p)2(3s)

4S

2D

4S

2P

4P2P

2D

4P

4D2S 2P

Page 21: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

The transitions shown here are forbidden.Relativity makes them occur anyway, butthey are quite weak.

Transitions

E

Oxygen3 P 0.0

1 D 15867.7

1 S 33792.4

630 nm

558 nm

E

Nitrogen4 S 0.0

2 D 19223

2 P 28840

520 nm

Page 22: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

Ψ Ψm el m mr s r s( , ) ( ) ( ),

� �= χ

< >=< >< >Ψ Ψ Ψ Ψmel

n el mel

el m m nr s r s r r s s( , )| | ( , ) ( )| | ( ) ( )| ( ), ,

� � � �µ µ χ χ

In non-relativistic approximation the wf ofstate m can be written as

Transition moment

The transition moment is

Thus there is the selection rule S=0.The remaining selection rules can bederived from the spatial transition moment.

Page 23: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

L=0,±1; however not L=0 � L=0i

i even � odd or odd � even (Laporte)J=0,±1; however not J=0 � J=0S=0

Selection rulesNon-relativistic theory

Page 24: Matti Hotokka Department of Physical Chemistry …users.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Atoms.pdf3p 4p 5p 6p 3d 4d 5d 6d 7d 4f 5f 6f 7f 671 323 274 256 813 497 427 399 6 1

Jyväskylä 2008

AASLaser ablation (LIBS)ICP-MS (or other detection)

Plasma