Mathematical foundations of DFT

48
Mathematical foundations of DFT Eric CANCES Ecole des Ponts and INRIA, Paris, France Los Angeles, July 21st, 2014

Transcript of Mathematical foundations of DFT

Page 1: Mathematical foundations of DFT

Mathematical foundations of DFT

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Los Angeles, July 21st, 2014

Page 2: Mathematical foundations of DFT

Outline of the talk 2.

1 - Electronic hamiltonians

2 - Constrained search

3 - Kohn-Sham and extended Kohn-Sham models

4 - Thermodynamic limits

Page 3: Mathematical foundations of DFT

1 - Electronic hamiltonians

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne + Vee

Atomic units: ~ = 1, e = 1, me = 1, 4πε0 = 1

N : number of electronsM : number of nucleizk ∈ N : charge of the kth nucleusRk ∈ R3 : position of the kth nucleus

ri : position of the ith electrons

Page 4: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C2)

Page 5: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Page 6: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

Page 7: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

•WN : set of normalized wavefunctions with finite energy (pure states)

WN ={

Ψ ∈ HN | 〈Ψ|Ψ〉 = 1, 〈Ψ|T |Ψ〉 <∞}, T = −

N∑i=1

1

2∇2

ri

Page 8: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

•WN : set of normalized wavefunctions with finite energy (pure states)

WN ={

Ψ ∈ HN | 〈Ψ|Ψ〉 = 1, 〈Ψ|T |Ψ〉 <∞}, T = −

N∑i=1

1

2∇2

ri

• DN : set of density operators with finite energy DN (mixed states)

DN :=

{Γ linear op. onHN | Γ† = Γ, 0 ≤ Γ ≤ 1, Tr(Γ) = 1, Tr(T Γ) <∞

}

Page 9: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

Theorem (Zhislin ’61): if N ≤M∑k=1

zk (neutral or positively charged sys-

tem), thenσ(HN) = {E0 ≤ E1 ≤ E2 · · · } ∪ [Σ,+∞).

0

Excited statesGround state

Essential spectrum

Ε

Σ

Page 10: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

Page 11: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

The ground state is obtained by solving the minimization problem

E0 = minΨ∈WN

〈Ψ|HN |Ψ〉 (pure-state formulation)

Page 12: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

The ground state is obtained by solving the minimization problem

E0 = minΨ∈WN

〈Ψ|HN |Ψ〉 (pure-state formulation)

or, equivalently, the minimization problem

E0 = minΓ∈DN

Tr(HN Γ) (mixed-state formulation)

Page 13: Mathematical foundations of DFT

2 - Constrained search

Page 14: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

Page 15: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

• Electronic density associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ nΓ(r) =

+∞∑l=1

fl nΨl(r)

Page 16: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

• Electronic density associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ nΓ(r) =

+∞∑l=1

fl nΨl(r)

Theorem (N -representability of densities).

We have

{n | ∃Ψ ∈ WN s.t. nΨ = n} ={n | ∃Γ ∈ DN s.t. nΓ = n

}= RN ,

where

RN :=

{n ≥ 0,

∫R3n(r) dr = N,

∫R3|∇√n(r)|2 dr <∞

}.

Page 17: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Page 18: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

Page 19: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

〈Ψ|HN |Ψ〉 = 〈Ψ|T + Vee|Ψ〉 + 〈Ψ|Vne|Ψ〉 = 〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

V (r) = −M∑k=1

zk|r−Rk|

Page 20: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

〈Ψ|HN |Ψ〉 = 〈Ψ|T + Vee|Ψ〉 + 〈Ψ|Vne|Ψ〉 = 〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

V (r) = −M∑k=1

zk|r−Rk|

Tr(HN Γ

)= Tr

((T + Vee

)Γ)

+ Tr(VneΓ

)= Tr

((T + Vee

)Γ)

+

∫R3nΓV

Page 21: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

Page 22: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)

Page 23: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))

Page 24: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Page 25: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Let

FLL[n] = infΨ∈WN |nΨ=n

〈Ψ|T + Vee|Ψ〉 Levy-Lieb functional.

Page 26: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Let

FLL[n] = infΨ∈WN |nΨ=n

〈Ψ|T + Vee|Ψ〉 Levy-Lieb functional.

We have

E0 = infn∈RN

(FLL[n] +

∫R3nV

).

Page 27: Mathematical foundations of DFT

2 - Constrained search 10.

Constrained search II: mixed state formulation (Valone ’80, Lieb ’83)

E0 = infΓ∈DN

Tr(HN Γ)

= infn∈RN

(inf

Γ∈DN |nΓ=n

Tr(HN Γ)

)

= infn∈RN

(inf

Γ∈DN |nΓ=n

(Tr(

(T + Vee)Γ)

+

∫R3nΓV

))

= infn∈RN

((inf

Γ∈DN |nΓ=n

(Tr(

(T + Vee)Γ)))

+

∫R3nV

).

LetFL[n] = inf

Γ∈DN |nΓ=n

Tr(

(T + Vee)Γ)

Lieb functional.

We have

E0 = infn∈RN

(FL[n] +

∫R3nV

).

Page 28: Mathematical foundations of DFT

2 - Constrained search 11.

FL[n0] = FLL[n0] if n0 is pure-state V -representable, that is if n0 is the den-sity associated with a ground state wavefunction for some external poten-tial V .

FL is the convex hull of FLL.

No explicit expressions of the functionals FL and FLL are available.

Approximations are needed for numerical simulations!

Page 29: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models

Page 30: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Page 31: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Can TLL[n] be "easily" computed? No.

Page 32: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Can TLL[n] be "easily" computed? No.

Can TJ[n] be "easily" computed? Yes!→ (extended) Kohn-Sham model

Page 33: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

Page 34: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Page 35: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Relation between the 1-RDM and the density

nΨ(r) = γΨ(r, r), nΓ(r) = γΓ(r, r) (in some weak sense).

Page 36: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Relation between the 1-RDM and the density

nΨ(r) = γΨ(r, r), nΓ(r) = γΓ(r, r) (in some weak sense).

Expressions of the kinetic energy as a function of the 1-RDM

〈Ψ|T |Ψ〉 =1

2

∫R3

(−∇2

rγΨ(r, r′)|r′=r

)dr

Tr(T Γ)

=1

2

∫R3

(−∇2

rγΓ(r, r′)|r′=r

)dr

Page 37: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Page 38: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Theorem (N -representability of mixed-state 1-RDM).

Let GN :={γ | ∃Γ ∈ DN s.t. γΓ = γ

}. We have

GN :=

{γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗∣∣ 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

Page 39: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Theorem (N -representability of mixed-state 1-RDM).

Let GN :={γ | ∃Γ ∈ DN s.t. γΓ = γ

}. We have

GN :=

{γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗∣∣ 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

"Explicit" expression of the Janak functional

TJ[n] = inf

{1

2

+∞∑i=1

νi

∫R3|∇φi|2, 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi|φi(r)|2 = n(r)

}.

Page 40: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 16.

Exchange-correlation functional

FL[n] = infΓ∈DN |nΓ

=nTr((T + Vee

)Γ)

= TJ[n] + EHartree[n] + Exc[n]

where• TJ[n]: Janak functional

• EHartree[n] =1

2

∫R3

∫R3

n(r)n(r′)

|r− r′|dr dr′: classical Coulomb interaction

• Exc[n] := FL[n]− T [n]− EHartree[n]: exchange-correlation functional.

Local Density Approximation (LDA):

ELDAxc [n] =

∫R3eHEG

xc (n(r)) dr

eHEGxc (n): exchange-correlation energy density of a homogeneous electron

gas of uniform density n.

Page 41: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 17.

Extended Kohn-Sham LDA model (orbital formulation)

ELDA0 = inf

{ELDA({φi, νi}), 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

1

2

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

φi: ith Kohn-Sham orbitalνi: occupation number of φi

ELDA({φi, νi}) =1

2

+∞∑i=1

νi

∫R3|∇φi|2+

∫R3n{φi,νi}V +EHartree[[n{φi,νi}]+

∫R3eHEG

xc (n{φi,νi}(r)) dr

n{φi,νi}(r) =

+∞∑i=1

νi|φi(r)|2

Page 42: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 18.

Extended Kohn-Sham LDA model (density operator formulation)

density matrix γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗ ↔ γ =

+∞∑i=1

νi|φi〉〈φi| density operator

ELDA0 = inf

{ELDA(γ), γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}ELDA(γ) = Tr

(−1

2∇2γ

)+

∫R3nγ(r)V (r) dr+EHartree[nγ]+

∫R3eHEG

xc (nγ(r)) dr,

nγ(r) = γ(r, r) in some weak sense.

The minimization set{γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}is convex and so are the first three terms of the LDA functional. On theother hand, the LDA exchange-correlation functional is concave.

Page 43: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 19.

Extended Kohn-Sham LDA equations (first order optimality conditions)

γ0 =∑i

νi|φi〉〈φi|, γ0(r, r′) =∑i

νiφi(r)φi(r′)∗, n0(r) = γ0(r, r) =

∑i

νi|φi(r)|2

HKSn0 φi = εiφi∫R3φiφ

∗j = δij

and

∣∣∣∣∣∣νi = 1 if εi < εF,0 ≤ νi ≤ 1 if εi = εF,νi = 0 if εi > εF,

∑i

νi = N

εFε

F

N=5 N=6

HKSn0 = −1

2∆ + V + n0 ? | · |−1 +

deHEGxc

dn(n0)

Page 44: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 20.

Some comments

1. For the exact exchange-correlation functional, the Kohn-Sham and ex-tended Kohn-Sham models give the same ground state energy.

2. For approximate exchange-correlation functionals, the two models agreefor "insulators", but may differ from "metals".

3. The extended Kohn-Sham is the one actually simulated when smearingtechniques are used to fasten SCF convergence: it is the limit when Tgoes to zero of the finite-temperature Kohn-Sham model.

4. The density operator formulation of the (extended) Kohn-Sham modelis very useful for the numerical simulation of very large systems (Kohn’s"shortsightedness" principle = decay of γ(r, r′) when |r− r′| → 0).

Page 45: Mathematical foundations of DFT

4 - Thermodynamic limits

Page 46: Mathematical foundations of DFT

4 - Thermodynamic limits 22.

DFT for crystals: some theoretical and practical issues

For each model (TFW, Hartree, LDA, GGA-PBE, B3LYP, ...),

1. Existence (and uniqueness) of the ground state density for molecules

2. Thermodynamic (bulk) limit for perfect crystals

L

Neutral finite cluster ρnucL , ρ0

L, γ0L∫

R3ρnucL =

∫R3ρ0L = Tr(γ0

L) = NL3

When L→∞, ρnucL converges to someR-periodic charge density ρnuc

per ,

• does ρ0L have a limit?

• is this limit someR-periodic density ρ0per?

• can ρ0per be characterized as a solution of some variational problem?

• can this problem be solved numerically?• same questions for the limit γ0

per of γ0L.

Page 47: Mathematical foundations of DFT

4 - Thermodynamic limits 23.

3. Thermodynamic limits for crystals with local defects and screening effect

ρnuc = ρnucper + m ρ0 = ρ0

per + ρm,εF γ0 = γ0per + Qm,εF

Formal definitions of the total charge of the defect

•∫R3m−

∫R3ρm,εF

• and also for Kohn-Sham models,∫R3m− Tr(Qm,εF)

Tr(Qm,εF) 6=∫R3 ρ

m,εF −→ charge screening!

Page 48: Mathematical foundations of DFT

4 - Thermodynamic limits 24.

State of the art of the mathematical analysis for 1, 2 and 3

Molecules Perfect crystals Charge screening

TF Lieb-Simon ’77 Lieb-Simon ’77 Lieb-Simon ’77TFW Lieb ’81 CLL ’98 E.C.-Ehrlacher ’11DIOF Blanc-E.C. ’05 - -DDOF ? ? ?

Hartree Solovej ’91 CLL ’01 E.C.-Lewin ’10LDA Anantharaman-E.C. ’09 non convex non convexGGA ?? ?? ??

B3LYP ?? ?? ??

Schrödinger Zhislin ’61 ???Fefferman ’85

HLS ’11

???

CLL: Catto-LeBris-Lions, HLS: Hainzl, Lewin, Solovej