Mathcad - fundatii izolate

32
FUNDATII IZOLATE FUNDATII IZOLATE FUNDATII IZOLATE FUNDATII IZOLATE Date gen erale: n 4 := a 0 := stalp: b s 0.4 := armati cu: 8ϕ16 PC52 longitudinal l s 0.5 := etrieri 10ϕ 100 pereti zidarie: BCA 30 cm H p 3.0 := cota terenului sistematizat: CTA 0.4 a + ( ) 0.4 = := stratificatia terenului: 0.00 ... -0.50: Umplutura -0.50 ...-3.50: Argila prafoasa, cafenie,plastic consistenta γ k1 18.2 := w 1 22% := I p1 21% := I c1 0.70 := ϕ k1 12deg := e 1 0.69 := E 1 12000 := c k1 45 0.15n + ( ) 45.6 = := -3.50 ... -10.00: Nisip argilos ,galben cafeniu γ k2 19 := w 2 18% := I p2 11% := ϕ k2 24deg := e 2 0.65 := E 2 14000 := c k2 5 0.2n + ( ) 5.8 = := Incarcarile de calcul pentru fiecare stalp se vor determina considerand: Incarcarea Distribuita Permanenta: Incarcarea Distribuita Variabila : p k 15 0.1n + ( ) 15.4 = := q k 8 0.1n + ( ) 8.4 = :=

Transcript of Mathcad - fundatii izolate

Page 1: Mathcad - fundatii izolate

FUNDATII IZOLATEFUNDATII IZOLATEFUNDATII IZOLATEFUNDATII IZOLATE

Date generale: n 4:= a 0:=

stalp: • bs 0.4:= armati cu: 8ϕϕϕϕ16 PC52 longitudinal

ls 0.5:= etrieri 10ϕϕϕϕ 100

pereti zidarie: • BCA 30 cm

Hp 3.0:=

cota terenului sistematizat:• CTA 0.4 a+( ) 0.4=:=

stratificatia terenului:•

0.00 ... -0.50: Umplutura

-0.50 ...-3.50: Argila prafoasa, cafenie,plastic consistenta

γγγγk1 18.2:= w1 22%:= Ip1 21%:= Ic1 0.70:=

ϕϕϕϕk1 12deg:= e1 0.69:= E1 12000:=

ck1 45 0.15n+( ) 45.6=:=

-3.50 ... -10.00: Nisip argilos ,galben cafeniu

γγγγk2 19:= w2 18%:= Ip2 11%:= ϕϕϕϕk2 24deg:=

e2 0.65:= E2 14000:= ck2 5 0.2n+( ) 5.8=:=

Incarcarile de calcul pentru fiecare stalp se vor determina considerand:

Incarcarea Distribuita Permanenta:•

Incarcarea Distribuita Variabila :•

pk 15 0.1n+( ) 15.4=:=

qk 8 0.1n+( ) 8.4=:=

Page 2: Mathcad - fundatii izolate

Stalpul S1•

SLU - GEO+STR , CP3 : A1/A2+M2+R3 , conf SR EN 1997•SLEN conf SR EN 1997 (calculul tasarii prin insumare pe strate elementare)•

γγγγGf 1.0:= γγγγQf 0:= γγγγR 1.40:= γγγγc 1.25:=

γγγγGn 1.35:= γγγγQn 1.5:= γγγγϕϕϕϕ 1.25:=

Page 3: Mathcad - fundatii izolate

1. ) PREDIMENSIONARE

Stabilirea Df :•

Df Hing 10...20( )cm+≥

Df. 0.90 0.2+ 1.1=:=

Stabilirea lui B si L ( bloc de fundare ) :•

peff pacc≤ AafS1 5 3⋅ 15=:=

pconv 408:= obtinut prin interpolare din tab de mai jos

pd pk γγγγGn⋅ 20.79=:= pacc pconv 0.4081

PakPa⋅=:=

qd qk γγγγQn⋅ 12.6=:=

NS1 AafS1 pd qd+( )⋅ 500.85=:=

Gf 0.25 NS1⋅ 125.213=:=

VdpS1 NS1 Gf+ 626.063=:=

Page 4: Mathcad - fundatii izolate

ls

bs

1.25=L1

B1

ls

bs

= 1.25= L1 B1 1.25⋅=

VdpS1

pconv

1.534= B1 L1⋅VdpS1

pconv

= 2.181=

B1

VdpS1

1.25 pconv⋅1.108=:= L1 B1 1.25⋅ 1.385=:=

B , L multiplu de 5 cm

B , L > 40 cm

Bs1 1.50:=

alegem : Ls1 2.0:=

Stabilirea lui lc , bc ( cuzinet ) :•

lc1 0.5Ls1 1=:= alegem beton clasa C 12/15

bc1 0.5Bs1 0.75=:=

lcs1 1.10:=

alegembcs1 0.80:=

Stabilirea lui Hb :•

tan αααα( ) tan ααααadm( )≥

tan ααααadm( ) 1.52:=

clasa C 8/10

Page 5: Mathcad - fundatii izolate

I.) tan αααα( )Hbloc

Ls1 lcs1−( )2

=

Hb1. 1.52Ls1 lcs1−( )

2⋅ 0.684=:=

II.) tan αααα( )Hbloc

Bs1 bcs1−( )2

=

Hb1.. 1.52Bs1 bcs1−( )

2⋅ 0.532=:=

Hb1 max Hb1. Hb1.., ( ) 0.684=:=

Hbloc-- multiplu de 5 cm

-- > 40 cmalegem : Hbloc1 0.70:=

Stabilirea lui hc :•

tan ββββ( ) tan ββββadm( )≥ tan ββββadm( ) 1.00:=

I.) tan ββββ( )hc

lcs1 ls−( )2

=

hc1. 1.00lcs1 ls−( )

2⋅ 0.3=:=

II.) tan ββββ( )hc

bcs1 bs−( )2

=

hc1.. 1.00bcs1 bs−( )

2⋅ 0.2=:=

hc max hc1. hc1.., ( ) 0.3=:=

hcz1-- multiplu de 5 cm

-- > 30 cmalegem : hcz1 0.30:=

Page 6: Mathcad - fundatii izolate

VERIFICAREA LA CAPACITATE PORTANTA

( SLU - GEO )

C. P. 3•

Eforturile sectionale :

NS1 500.85=

Mx1 0.2 NS1⋅ 100.17=:= Tafx1 0.1 NS1⋅ 50.085=:=

My1 0.1 NS1⋅ 50.085=:= Tafy1 0.05 NS1⋅ 25.043=:=

hgr CTA 0.2+ 0.6=:=bgr 0.30:=

Adancimea de fundarehgr 2 bgr⋅ 0.6=:=

Df. 0.20 hcz1+ Hbloc1+ 1.2=:=Tr 5.0:=

Hz 3.0:=γγγγbet 25:=

bz 0.3:=

γγγγmed 22:= γγγγBCA 8:=Htot1 Df. CTA+ 1.6=:=

Vd Ned Npd+ Gfd+=

Npd1 γγγγGn hgr bgr⋅ Tr⋅ γγγγbet⋅ Hz bz⋅ Tr⋅ γγγγBCA⋅+( )⋅ 78.975=:=

Gfd1 γγγγGn Bs1 Ls1⋅ Htot1⋅ γγγγmed⋅( )⋅ 142.56=:=

Vd1 NS1 Npd1+ Gfd1+ 722.385=:=

e1

bs

2

bgr

2+ 0.35=:=

Page 7: Mathcad - fundatii izolate

Mxfed1 Mx1 Tafx1 Hbloc1 hcz1+( )⋅+ Npd1 e1⋅+ 177.896=:=

Tyfed1 Tafy1 25.043=:=

Myfed1 My1 Tafy1 Hbloc1 hcz1+( )⋅+ 75.128=:=

Txfed1 Tafx1 50.085=:=

Hd1 Tyfed12Txfed1

2+

55.997=:=

Calculul presiunii active la talpa fundatiei•

pef

Vd

A1

=

pcr

Rd

A1

=

≤ A1 B1 L1⋅=

eB1

Myfed1

Vd1

0.104=:= B1 Bs1 2eB1− 1.292=:=

eL1

Mxfed1

Vd1

0.246=:= L1 Ls1 2eL1− 1.507=:=

eB1

Bs1

6<

A1 B1 L1⋅ 1.948=:=

eL1

Ls1

6<eB1

Bs1

2eL1

Ls1

2

+ 0.02=

E "VERIFICA"eB1

Bs1

2eL1

Ls1

2

+

1

9<if

"NU VERIFICA" otherwise

:=E "VERIFICA"=

pef1

Vd1

A1

370.899=:=

Page 8: Mathcad - fundatii izolate

Calculul capacitatii portante•

-- se face in conditii drenate

αααα 0:= inclinarea bazei fundatiei

c1

ck1

γγγγc36.48=:=

ϕϕϕϕ1 9.56deg:=

Nq 2.374:=

Nc 8.155:=

Nγγγγ 0.463:=

mB

2B1

L1

+

1B1

L1

+

1.538=:=bq 1 αααα tan ϕϕϕϕ1( )2⋅−

1=:=

bγγγγ bq 1=:=

bc bq

1 bq−( )Nc tan ϕϕϕϕ1( )⋅( )

− 1=:=mL

2L1

B1

+

1L1

B1

+

1.462=:=

sq 1B1

L1

sin ϕϕϕϕ1( )⋅+ 1.142=:=

θθθθ 63.43deg:=

m mL cos θθθθ( )2⋅ mB sin θθθθ( )

2⋅+ 1.523=:=sγγγγ 1 0.3

B1

L1

⋅− 0.743=:=

sc

sq Nq⋅ 1−( )Nq 1−( )

1.246=:=Hd1 55.997=

iq 1Hd1

Vd1 A1 c1⋅1

tan ϕϕϕϕ1( )⋅+

m

0.895=:=

Page 9: Mathcad - fundatii izolate

iγγγγ 1Hd1

Vd1 A1 c1⋅1

tan ϕϕϕϕ1( )⋅+

m 1+

0.831=:=

ic iq

1 iq−( )Nc tan ϕϕϕϕ1( )⋅( )

− 0.882=:=

q1 Df. γγγγk1⋅ 21.84=:=

pacc

Rd

A1

=

pacc1 c1 Nc⋅ bc⋅ sc⋅ ic⋅ q1 Nq⋅ bq⋅ sq⋅ iq⋅+ 0.5 γγγγk1⋅ B1⋅ Nγγγγ⋅ bγγγγ⋅ sγγγγ⋅ iγγγγ⋅+ 383.109=:=

pacc1 383.109=

pef1 370.899=

V "VERIFICA" pacc1 pef1≥if

"NU VERIFICA" otherwise

:=V "VERIFICA"=

VERIFICAREA LA TASARE

( SLEN )

conditia SED SCD≤

SEDtasarea pamantului sub fundatie

SCDtasarea admisibila

Page 10: Mathcad - fundatii izolate

Calculul luiSED folosind metoda insumarii pe straturi elementare

-- se folosesc valorile caracteristice γγγγG 1:= γγγγQ 1:=

Vd Ned Npd+ Gfd+=

Npk1 γγγγG hgr bgr⋅ Tr⋅ γγγγbet⋅ Hz bz⋅ Tr⋅ γγγγBCA⋅+( )⋅ 58.5=:=

Gfk1 γγγγG Bs1 Ls1⋅ Htot1⋅ γγγγmed⋅( )⋅ 105.6=:=

NSk1 AafS1 pk qk+( )⋅ 357=:=

Vk1 NSk1 Npk1+ Gfk1+ 521.1=:=

pef.1

Vk1

Bs1 Ls1⋅173.7=:=

pneta1 pef.1 γγγγk1 Df.⋅− 151.86=:=

straturile elementare :•

h1. 0.4 Bs1⋅ 0.6=:=

alegem h1 0.40m:=h1.. 1.0:=

h1 min h1. h1.., ( )=

εεεεσσσσ

ΕΕΕΕ= S

σσσσ

ΕΕΕΕH⋅= σσσσz 0.2 σσσσgz⋅≤

σσσσz αααα0 pneta1⋅= σσσσz efortul− transmis de structura in pamant

σσσσgz γγγγ Df⋅ + ΣΣΣΣhi γγγγi⋅+= σσσσgz presiunea− geologica

SED ββββ 100⋅ ΣΣΣΣ⋅ σσσσzi.med

hi

ΕΕΕΕ⋅

⋅= ββββ 0.8:=

Page 11: Mathcad - fundatii izolate

din calcule rezulta : SED1 0.325cm:=

SCD1 5.0cm:= pentru pamanturi necoezive

S1 "VERIFICA" SED1 SCD1≤if

"NU VERIFICA" otherwise

:=S1 "VERIFICA"=

?2= 19

?1= 18.2

Df= 1.2

Df*?1= 21.84

E1= 12000

E2= 14000

Sed1= 0.00325

Date generale

TASAREA S1

m m - - - kPa kPa kPa kPa kPa

1 0.4 0.4 0.267 1.333 0.914 138.8 145.33 29.12 25.48 5.096

2 0.4 0.8 0.533 1.333 0.708 107.5169 123.16 36.4 32.76 6.552

3 0.4 1.2 0.8 1.333 0.477 72.43722 89.977 43.68 40.04 8.008

4 0.4 1.6 1.067 1.333 0.359 54.51774 63.477 50.96 47.32 9.464

5 0.4 2 1.333 1.333 0.261 39.63546 47.077 58.24 54.6 10.92

6 0.3 2.3 1.533 1.333 0.211 32.04246 35.839 63.7 60.97 12.194

7 0.4 2.7 1.8 1.333 0.167 25.36062 28.702 71.3 67.5 13.5

8 0.4 3.1 2.067 1.333 0.132 20.04552 22.703 78.9 75.1 15.02

9 0.4 3.5 2.333 1.333 0.114 17.31204 18.679 86.5 82.7 16.54

10 0.4 3.9 2.6 1.333 0.095 14.4267 15.869 94.1 90.3 18.06

0.2*τgz med Nr strat

hi z z/B L/B α0 sup/inf τz sup/inf τz med τgz sup/inf τgz med

Page 12: Mathcad - fundatii izolate

ARMAREA FUNDATIEI S1

Ned.c1 NS1 Npd1+ lcs1 bcs1⋅ hcz1⋅ γγγγbet⋅( ) γγγγGn⋅+ 588.735=:=

Mxed.c1 Mx1 Tafx1 hcz1⋅+ Npd1 e1⋅+ 142.837=:=

eL.

Mxed.c1

Ned.c1

0.243=:= pc1.2

Ned.c1

lc bc⋅1 6−

eL

lc

⋅+

⋅=

pc1

Ned.c1

lcs1 bcs1⋅1 6

eL.

lcs1

⋅+

⋅ 1.554 103

×=:=

pc2

Ned.c1

lcs1 bcs1⋅1 6

eL.

lcs1

⋅−

⋅ 216.335−=:=

pc2 0< admitem pc2=0

elcs1

60.183=:= c1

lcs1

2e− 0.367=:=

p12

3

Ned.c1

bcs1 c1⋅⋅ 1.338 10

3×=:= p0.1 975:=

Page 13: Mathcad - fundatii izolate

Armatura As3•

cnom 0.05:=x1 1.345:=

Ta1 pc2

x1

2⋅ bcs1⋅ 116.388−=:=

alegem PC 52 cu : fyd345

1.15300=:=

armam constructiv cu 5 ϕϕϕϕ 10 ladistanta de 25 cm

A1.S3

Ta1

fyd

0.388=:=

A1.S3ef 3.14 104−

×:=ρρρρ3

A1.S3ef

bcs1 hcz1 cnom−( )⋅1.57 10

3−×=:=

Armatura As1•lcy1

lcs1 ls−( )2

0.3=:=

Mx.x1 bcs1 p0.1 lcy1⋅lcy1

2⋅ p1 p0.1−( )

lcy1

2⋅

2

3⋅ lcy1⋅+

⋅ 43.813=:=

cnom 0.05= ϕϕϕϕsl 0.014:= avem clasa de beton C12/15

fcd12

1.58=:=

dx hcz1 cnom−ϕϕϕϕsl

2− 0.243=:=

Page 14: Mathcad - fundatii izolate

μμμμx μμμμlim<μμμμx

Mx.x1

bcs1 dx2⋅ fcd⋅ 1000⋅

0.116=:= μμμμlim 0.403:=

fyk 345MPa:= fctm 1.6MPa:=ωωωω 1 1 2μμμμx−− 0.124=:=

Asmin 0.26fctm

fyk

⋅ bcs1⋅ 104

⋅ dx⋅ 2.344=:=Asx ωωωω bcs1⋅ 10

4⋅ dx⋅

fcd

fyd

⋅ 6.406=:=

alegem ϕϕϕϕ 5 14 cu : As1ef 7.70cm2:=

distanta dintre bare : d = 17.5 cmA1.S1 7.70 10

4−⋅:=

ρρρρl

A1.S1

bcs1 dx⋅3.961 10

3−×=:= ρρρρmin 0.075% 7.5 10

4−×=:=

ρρρρ1 ρρρρmin>

Armatura As2•

pmed1

p1 0+( )2

669.017=:= lcx1

bcs1 bs−( )2

0.2=:=

My.y1 lcs1 pmed1 lcx1⋅lcx1

2⋅

⋅ 14.718=:=

ϕϕϕϕs2 0.010:= cnom 0.05=

dy hcz1 cnom−ϕϕϕϕs2

2− ϕϕϕϕsl− 0.231=:=

μμμμy

My.y1

lcs1 dy2⋅ fcd⋅ 10

3⋅

0.031=:= μμμμlim. 0.403:= μμμμy μμμμlim<

Page 15: Mathcad - fundatii izolate

ωωωω 1 1 2μμμμy−− 0.032=:=Asmin. 0.26

fctm

fyk

⋅ lcs1⋅ dy⋅ 3.064 104−

×=:=

Asy ωωωω lcs1⋅ dy⋅fcd

fyd

⋅ 2.158 104−

×=:=

alegem ϕϕϕϕ 5 10 cu : As2ef 3.92cm2:=

distanta dintre bare : d = 25 cm

A1.S2 3.92 104−

⋅:=

ρρρρ2

A1.S2

lcs1 dy⋅1.543 10

3−×=:= ρρρρmin. 0.075% 7.5 10

4−×=:=

ρρρρ2 ρρρρmin<

Lungimi de ancoraj + lungimea ciocurilor•

As1

Lcioc1 15 ϕϕϕϕsl⋅ 0.21=:=

As2

Lcioc2 15 ϕϕϕϕs2⋅ 0.15=:=

As3

αααα1 1:= αααα3 1:= αααα5 1:=lbrqd 94:=

αααα2 0.7:= αααα4 0.7:=

la αααα1 αααα2⋅ αααα3⋅ αααα4⋅ αααα5⋅ lbrqd⋅ 46.06=:=

Page 16: Mathcad - fundatii izolate

Lanc3. la 25+ 71.06=:=

Lanc3 75cm:=

ϕϕϕϕ Armatura din stalp 8 16

lbrqd. 105cm:=

la. αααα1 αααα2⋅ αααα3⋅ αααα4⋅ αααα5⋅ lbrqd.⋅ 0.514m=:=

LancS1. la. 250mm+ 0.764m=:=

LancS1 80cm:=

Stalpii S2+S3•

1.) PREDIMENSIONARE S2

Stabilirea Df :•

Df Hing 10...20( )cm+≥

Df2 1.1:=

Stabilirea lui L2 , B2 ,H2 :•

peff pacc≤ AafS2 6 2.5⋅ 15=:=

pconv2 408:= obtinut prin interpolare

pacc2 pconv2 408=:=pd. 20.79:=

qd. 12.6:=

Page 17: Mathcad - fundatii izolate

NS2 AafS2 pd. qd.+( )⋅ 500.85=:=L2

B2

ls

bs

= r=

Gf2 0.25 NS2⋅ 125.213=:=ls

bs

1.25=VdpS2 NS2 Gf2+ 626.063=:=

B2.

VdpS2

1.25 pconv2⋅1.108=:= L2. 1.25 B2.⋅ 1.385=:=

alegem : B2 1.25:=

L2 1.75:=

pef2

VdpS2

B2 L2⋅286.2=:=

luam clasa de beton C12/15 si rezulta ca H/L = min 0.29

Page 18: Mathcad - fundatii izolate

H2. 0.29 L2⋅ 0.507=:=

H2 0.75:=

1'.) PREDIMENSIONARE S3

Stabilirea Df :•

Df Hing 10...20( )cm+≥

Df3 1.1:=

Stabilirea lui L3 , B3 ,H3 :•

peff pacc≤ AafS3 6 5⋅ 30=:=

pconv3 408:= obtinut prin interpolare

pacc3 pconv3 408=:=pd.. 20.79:=

qd3.. 12.6:=

L3

B3

ls

bs

= r=NS3 AafS3 pd. qd.+( )⋅ 1.002 10

3×=:=

Gf3 0.25 NS3⋅ 250.425=:= ls

bs

1.25=

VdpS3 NS3 Gf3+ 1.252 103

×=:=

B3.

VdpS3

1.25 pconv3⋅1.567=:= L3. 1.25 B3.⋅ 1.959=:=

Page 19: Mathcad - fundatii izolate

alegem : B3 1.60:=

L3 2.40:=

pef3

VdpS3

B3 L3⋅326.074=:=

luam clasa de beton C12/15 si rezulta ca H/L = min 0.30

H3. 0.30 L3⋅ 0.72=:=

alegem : H3 0.75:= !!! din acest motiv modificam si inaltimea fundatiei de sub stalpul S2 , rezultand

H2 = 0.7 m

2.) VERIFICARE LA CAPACITATE PORTANTA S2+S3

consideram ca presiunea se transmite numai

pe talpa fundatiei

Kgr

Kst

10≤

Ed1efectul actiunilor la talpa fundatiei din axul 1,

de forma unei forte verticale 1). Ed1

A1.2

Rd1

A1.2

Ed2efectul actiunilor la talpa fundatiei din axul 2,

de forma unei forte verticale

A1.2aria efectiva la talpa fundatiei din axul 12).

Ed2

A1.3

Rd2

A1.3

A1.3aria efectiva la talpa fundatiei din axul 2

Eforturile sectionale :

NS2 500.85=

Page 20: Mathcad - fundatii izolate

Mx2 0.2 NS2⋅ 100.17=:= Tafx2 0.1 NS2⋅ 50.085=:=

My2 0.1 NS2⋅ 50.085=:= Tafy2 0.05 NS2⋅ 25.043=:=

NS3 1.002 103

×=

Mx3 0.2 NS3⋅ 200.34=:= Tafx3 0.1 NS3⋅ 100.17=:=

My3 0.1 NS3⋅ 100.17=:= Tafy3 0.05 NS3⋅ 50.085=:=

Gfd2. L2 B2⋅ H2⋅ γγγγbet⋅ 41.016=:=

Gfd3. L3 B3⋅ H3⋅ γγγγbet⋅ 72=:=

Grinda de fundare :•bs

20.2=

lgr. 5 B2

B3

2+

− 0.2+ 3.15=:=

hgr

bgr

1.5.....3= bgr = minim latimea stalpului ls. 0.5:=

bgr. 0.50:=

hgr. 0.75:= luam inaltimea grinzii egala cu inaltimea fundatiei

lgr. 3.15:=

Ggr bgr. hgr.⋅ lgr.⋅ γγγγbet⋅ 29.531=:=

Gfd2 Gfd2.

Ggr

2+ 55.781=:=

Gfd3 Gfd3.

Ggr

2+ 86.766=:=

Page 21: Mathcad - fundatii izolate

Myfed2 My2 Tafy2 H2⋅+ 68.867=:=

Myfed3 My3 Tafy3 H3⋅+ 137.734=:=

ΣΣΣΣM1 0= obtinem E2

ΣΣΣΣM2 0= obtinem E1

ΣΣΣΣM1 0=

Ed2

Myfed3 NS3 4.575⋅+ Gfd3 4.575⋅+ Myfed2− NS2 0.425⋅−( )4.575

1.057 103

×=:=

ΣΣΣΣM2 0=

Ed1

Myfed2 NS2 5⋅+ Gfd2 4.575⋅+ Myfed3−( )4.575

588.105=:=

VERIFICARE : NS2 NS3+ Gfd2+ Gfd3+ Ed1− Ed2− 0=

Page 22: Mathcad - fundatii izolate

Axul 1 :•

Mxfed2 Mx2 Tafx2 H2⋅+ 137.734=:=

eL2

Mxfed2

Ed1

0.234=:=

B1.2 B2 1.25=:= L1.2 L2 2eL2− 1.282=:=

A1.2 B1.2 L1.2⋅ 1.602=:=

Axul 2 :•

Mxfed3 Mx3 Tafx3 H3⋅+ 275.468=:=

eL3

Mxfed3

Ed2

0.261=:=

B1.3 B3 1.6=:= L1.3 L3 2eL3− 1.879=:=

A1.3 B1.3 L1.3⋅ 3.006=:=

Hd2 Tafx22Tafy2

2+ 55.997=:=

Hd3 Tafx32Tafy3

2+ 111.993=:=

presiunile

efective :pef2.

Ed1

A1.2

367.106=:= pef3.

Ed2

A1.3

351.623=:=

Calculul capacitatii portante S2•

-- se face in conditii drenate

ϕϕϕϕ1 9.56 deg⋅=αααα 0:= inclinarea bazei fundatiei

c1 36.48:=

Nq2 Nq 2.374=:=

Page 23: Mathcad - fundatii izolate

Nc2 Nc 8.155=:=

Nγγγγ2 Nγγγγ 0.463=:=

mB2

2B1.2

L1.2

+

1B1.2

L1.2

+

1.506=:=bq2 1 αααα tan ϕϕϕϕ1( )2⋅−

1=:=

bγγγγ2 bq 1=:=

bc2 bq

1 bq−( )Nc tan ϕϕϕϕ1( )⋅( )

− 1=:=

mL2

2L1.2

B1.2

+

1L1.2

B1.2

+

1.494=:=

sq2 1B1.2

L1.2

sin ϕϕϕϕ1( )⋅+ 1.162=:=

θθθθ 63.43deg:=

m mL2 cos θθθθ( )2⋅ mB2 sin θθθθ( )

2⋅+ 1.504=:=sγγγγ2 1 0.3

B1.2

L1.2

⋅− 0.707=:=

sc2

sq2 Nq⋅ 1−( )Nq 1−( )

1.28=:=

iq2 0.91:=

iγγγγ2 0.854:=

ic2 0.84:=

q2 20.02:=

pacc

Rd

A1

=

pacc2 c1 Nc⋅ bc⋅ sc⋅ ic⋅ q2 Nq⋅ bq⋅ sq⋅ iq⋅+ 0.5 γγγγk1⋅ B1.2⋅ Nγγγγ⋅ bγγγγ⋅ sγγγγ⋅ iγγγγ⋅+ 378.584=:=

Page 24: Mathcad - fundatii izolate

pacc2 378.584=

pef2. 367.106=

V2 "VERIFICA" pacc2 pef2.≥if

"NU VERIFICA" otherwise

:=V2 "VERIFICA"=

Calculul capacitatii portante S3•

-- se face in conditii drenate

ϕϕϕϕ1 9.56 deg⋅=αααα 0:= inclinarea bazei fundatiei

c1 36.48=

Nq3 Nq 2.374=:=

Nc3 Nc 8.155=:=

Nγγγγ3 Nγγγγ 0.463=:=

mB3

2B1.3

L1.3

+

1B1.3

L1.3

+

1.54=:=bq3 1 αααα tan ϕϕϕϕ1( )2⋅−

1=:=

bγγγγ3 bq 1=:=

bc3 bq

1 bq−( )Nc tan ϕϕϕϕ1( )⋅( )

− 1=:=

mL3

2L1.3

B1.3

+

1L1.3

B1.3

+

1.46=:=

sq3 1B1.3

L1.3

sin ϕϕϕϕ1( )⋅+ 1.141=:=

θθθθ 63.43deg:=

sγγγγ3 1 0.3B1.3

L1.3

⋅− 0.745=:=

m mL3 cos θθθθ( )2⋅ mB3 sin θθθθ( )

2⋅+ 1.524=:=

Page 25: Mathcad - fundatii izolate

sc3

sq3 Nq⋅ 1−( )Nq 1−( )

1.244=:=

iq3 0.902:=

iγγγγ3 0.843:=

ic3 0.831:= pacc

Rd

A1

=

q3 20.02:=

pacc3. c1 Nc3⋅ bc3⋅ sc3⋅ ic3⋅ q3 Nq3⋅ bq3⋅ sq3⋅ iq3⋅+ 0.5 γγγγk1⋅ B1.3⋅ Nγγγγ3⋅ bγγγγ3⋅ sγγγγ3⋅ iγγγγ3⋅+:=

pacc3. 360.796=

pef3. 351.623=

V3 "VERIFICA" pacc3. pef3.≥if

"NU VERIFICA" otherwise

:=V3 "VERIFICA"=

ARMARE FUNDATIEI S2

p1.2

Ed1

L2 B2⋅1 6−

eL2

L2

+

⋅= eL2

L2

6≤

eL2.

L2

60.292=:=

p1.2

Ed1

L2 B2⋅1 6

eL2.

L2

+

⋅ 537.696=:=

Page 26: Mathcad - fundatii izolate

p2.2

Ed1

L2 B2⋅1 6

eL2.

L2

⋅ 0=:= p02 350.51:=

Armatura As1•

lcy2 0.6:=cnom 0.05= ϕϕϕϕs2 0.016:=

lcx2 0.425:=

Mx.x2 B2 p02 lcy2⋅lcy2

2⋅ p1.2 p02−( )

lcy2

2⋅

2

3⋅ lcy2⋅+

⋅ 106.943=:=

fcd12

1.58=:=

dx2 H2 cnom−ϕϕϕϕs2

2− 0.692=:=

μμμμx μμμμlim<μμμμx2

Mx.x2

B2 dx22⋅ 10

3⋅ fcd⋅

0.022=:= μμμμlim 0.403:=

ωωωω2 1 1 2μμμμx2−− 0.023=:=Asmin 0.26

fctm

fyk

⋅ B2⋅ dx2⋅ 104

⋅ 10.43=:=

Asx2 ωωωω2 B2⋅ dx2⋅ 104

⋅fcd

fyd

⋅ 5.21=:=

alegem ϕϕϕϕ 6 16 cu : d = 23 cm

As1ef2 12.06cm2:=

A1.S2 12.06 104−

⋅:=

ρρρρ2

A1.S2

B2 dx⋅3.97 10

3−×=:= ρρρρmin 0.075% 7.5 10

4−×=:=

ρρρρ2 ρρρρmin>

Page 27: Mathcad - fundatii izolate

Armatura As2•

pmed2

p1.2 p2.2+( )2

268.848=:=

My.y2 L2 pmed2 lcx2⋅lcx2

2⋅

⋅ 42.491=:=

L2 1.75=

dy2 H2 cnom−ϕϕϕϕs2

2− ϕϕϕϕs2− 0.676=:=

μμμμy2

My.y2

L2 dy22⋅ 10

3⋅ fcd⋅

6.642 103−

×=:= μμμμlim 0.403:=

μμμμx μμμμlim<

ωωωω2 1 1 2μμμμy2−− 6.664 103−

×=:=

Asmin 0.26fctm

fyk

⋅ L2⋅ dy2⋅ 104

⋅ 14.265=:=Asy2 ωωωω2 L2⋅ dy2⋅ 10

4⋅

fcd

fyd

⋅ 2.102=:=

A2.S2 16.94 104−

×:= alegem ϕϕϕϕ 11 14 cu : d = 16.5 cm

As1ef 16.94cm2:=

ρρρρy2

A2.S2

L2 dy2⋅1.432 10

3−×=:= ρρρρmin. 7.5 10

4−×= ρρρρ2 ρρρρmin>

ARMARE FUNDATIEI S3

p1.2

Ed2

L2 B2⋅1 6−

eL2

L2

+

⋅= eL2

L2

6≤

Page 28: Mathcad - fundatii izolate

eL3.

B3

60.267=:=

p1.3

Ed2

L3 B3⋅1 6

eL3.

L3

+

⋅ 458.764=:=

p2.3

Ed2

L3 B3⋅1 6

eL3.

L3

⋅ 91.753=:= p03 172.13:=

Armatura As1•

lcy3 0.95:=cnom 0.05= ϕϕϕϕs3 0.016:=

lcx3 0.6:=

Mx.x3 B3 p03 lcy3⋅lcy3

2⋅ p1.3 p03−( )

lcy3

2⋅

2

3⋅ lcy3⋅+

⋅ 262.244=:=

Page 29: Mathcad - fundatii izolate

dx3 H3 cnom−ϕϕϕϕs3

2− 0.692=:=

μμμμx3

Mx.x3

B3 dx32⋅ 10

3⋅ fcd⋅

0.043=:= μμμμlim 0.403:=

μμμμx μμμμlim<

ωωωω3 1 1 2μμμμx3−− 0.044=:=

Asmin 0.26fctm

fyk

⋅ B3⋅ dx3⋅ 104

⋅ =:=Asx3 ωωωω3 B3⋅ dx3⋅ 10

4⋅

fcd

fyd

⋅ 12.915=:=

A1.S3 14.07 104−

×:= alegem ϕϕϕϕ 7 16 cu : d = 25 cm

As1ef 14.07cm2:=

ρρρρx3

A1.S3

B3 dx3⋅1.271 10

3−×=:= ρρρρmin. 7.5 10

4−×= ρρρρ2 ρρρρmin>

Armatura As2•

pmed3

p1.3 p2.3+( )2

275.258=:=

My.y3 L3 pmed3 lcx3⋅lcx3

2⋅

⋅ 118.912=:=

dy3 H3 cnom−ϕϕϕϕs3

2− ϕϕϕϕs3− 0.676=:=

Page 30: Mathcad - fundatii izolate

μμμμy3

My.y3

L3 dy32⋅ 10

3⋅ fcd⋅

0.014=:=μμμμlim 0.403:= μμμμy μμμμlim<

ωωωω3. 1 1 2μμμμy3−− 0.014=:=

Asmin 0.26fctm

fyk

⋅ L3⋅ dy3⋅ 104

⋅ 19.563=:=Asy3 ωωωω3. L3⋅ dy3⋅ 10

4⋅

fcd

fyd

⋅ 5.904=:=

alegem ϕϕϕϕ 11 16 cu : As1ef 22.11cm2:=

distanta dintre bare : d = 23 cm

A2.S3 22.11 104−

×:=

ρρρρy3

A2.S3

L3 dy3⋅1.363 10

3−×=:= ρρρρmin. 7.5 10

4−×= ρρρρ3 ρρρρmin>

ϕϕϕϕLUNGIMEA CIOCURILOR = 15

GRINDA DE ECHILIBRARE

Hgr 0.75:= Bgr 0.5:=

Vmax 500.85:= Mmax 281.37:=

armatura longitudinala :•

ϕϕϕϕsg 0.022:= cnom 0.05=

dg Hgr cnom−ϕϕϕϕsg

2− 0.689=:=

Page 31: Mathcad - fundatii izolate

μμμμg

Mmax

Bgr dg2⋅ 10

3⋅ fcd⋅

0.148=:=μμμμlim 0.403:= μμμμy μμμμlim<

ωωωωg 1 1 2μμμμg−− 0.161=:=

Asmin 0.26fctm

fyk

⋅ Bgr⋅ dg⋅ 104

⋅ 4.154=:=Asg ωωωωg Bgr⋅ dg⋅ 10

4⋅

fcd

fyd

⋅ 14.806=:=

alegem ϕϕϕϕ 4 22 cu : As1efg 15.20cm2:=

Al.gr 15.20 104−

×:=

ρρρρg

Al.gr

Bgr dg⋅4.412 10

3−×=:= ρρρρmin. 7.5 10

4−×= ρρρρ3 ρρρρmin>

armatura transversala :•

In fundatia S2 :

cRd.c 0.12:= ρρρρl ρρρρg 4.412 103−

×=:= fck 8:=

ηηηη 1:= k 1200

dg 103

⋅+ 1.539=:=

VRd.c. cRd.c ηηηη⋅ k⋅ 100 ρρρρl⋅ fck⋅( )1

3⋅ dg⋅ Bgr⋅ 10

6⋅ 9.686 10

4×=:=

VRd.c

VRd.c.

100096.856=:=

ctgθθθθ 1.75:= z 0.9 dg⋅ 0.62=:=

Vmax VRd.c> fywd fyd 300=:=

Page 32: Mathcad - fundatii izolate

Asw

s

Vmax

z fywd⋅ ctgθθθθ⋅≥

impunem s 0.10:= Asw

Vmax 106

⋅ s⋅

z fywd⋅ ctgθθθθ⋅ 103

⋅153.846=:=

ϕϕϕϕalegem Etrier 2 10 la distanta de 10 cm cu : Asw. 1.57 cm2⋅:=

In camp si in fundatia S3

Ved 31.474:=

VRd.c 96.856=

Ved VRd.c< ϕϕϕϕalegem constructiv Etrier 10 la distanta de 25 cm