Material representation, Reflectance, BRDFs -...

39
Material representation, Reflectance, BRDFs

Transcript of Material representation, Reflectance, BRDFs -...

Page 1: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

Material representation, Reflectance, BRDFs

Page 2: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! A single point light source ! Linear combination for several light sources ▪ I(a+b) = I(a)+I(b) ▪ I(s . a) = s . I(a)

! No interactions between objects ▪ No shadows, no reflections

! Computing color independently for each pixel

2

Local illumination models

Page 3: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! 4D Function: f(θ,φ,θ0, φ0), tells how the light is reaching a point is reflected

3

BRDF: Bi-directional Reflectance Distribution Function

Page 4: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

4

BRDF•Ratio between incoming light and outgoing light

•Complete description of the behaviour of the material at each point, for every incoming and outgoing direction

Page 5: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Isotropic ▪ Rotationally invariant (3D) ▪ True for many materials ▪ One dimension less

5

BRDF - Isotropic vs. anisotropic?! Anisotropic ▪ Depends on the angle

of rotation around the surface normal

Page 6: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Constraints: ▪ Storage space ▪ Accurate representation of the properties of a

material ▪ Fast and easy sampling

! 2 solutions: ▪ Explicit storage of measured data ▪ Approximation through an analytical model

6

BRDF – Representation

Page 7: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Acquisition system: gonioreflectometer

7

BRDF - Acquisition

http://www.graphics.cornell.edu/~westin/

Page 8: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! MERL dataset ▪ 100 measured

materials

8

BRDF – Database

Page 9: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Empirical ▪ Lambert, Phong, Blinn, Ward, Lafortune ▪ Can be combined for increased realism ▪ Easy to use

! Physically based models ▪ Torrance-Sparrow, Cook-Torrance, Kajiya… ▪ Need information on the material (roughness…)

9

BRDF- Analytical models

Page 10: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Diffuse reflexion ▪ Object reflecting light uniformly in all directions

! Lambertian surfaces (mate: chalk, paper) ▪ Intensity at one point: only depends on the angle

between incoming light and surface normal

! Uniform BRDF

10

Ideal diffuse reflection

surface

Page 11: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

11

Diffuse reflection

increasing ρd

I = ρd cosθ

Page 12: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

12

Ambiant light! Trick for better visual realism ! No relation with physical realism ! Light independent from position:

! Very simple model: ! no visible 3D effect ! useful to hide some defects

I = ρa Ia

Page 13: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

13

Ambiant light

increasing ρa

Page 14: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

14

Diffuse + ambiant

increasing ρd

incr

easi

ng ρ

a

Page 15: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! rough diffuse materials

15

Oren–Nayar model [1993]

Photograph Diffuse model Oren-Nayar

Page 16: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Specular reflection ▪ Smooth, shiny surfaces (mirrors, metals)

! Snell / Descartes law ▪ Light reaching a point reflected in the direction

having the same angle with the normal

! BRDF: Dirac distribution

16

Ideal specular reflection

surface

NP

θθLR

Page 17: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Problem: ideal specular reflection limited ▪ Useful for indirect lighting ▪ Less so for direct lighting with point light sources ▪ Assumes perfectly smooth surfaces

! Phong model ! Fresnel coefficients

17

Non-ideal specular reflection

surface

NP

θ

Page 18: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Intensity varying with angle α between viewing direction V and reflected direction R (R symmetric of L w.r.t. the normal)

I(P) = ρs L coss α

▪ s = roughness: ∞ (1024) for a mirror, 2-3 for rough surface ▪ cos α = V . R ▪ R = 2(cosθ) N-L

= 2(N . L) N-L

18

Phong model [1975]

P

NP

θθLR

Page 19: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

19

Phong modelρs

n

Page 20: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

20

Page 21: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

21

Page 22: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

22

Page 23: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Uses the half-vector:

! Reflected light is now:

23

Blinn-Phong model [1977]

h =l + vl + v

I = ρs cosθ( )n = ρs h • n( )n

Page 24: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Visually very similar ▪ assuming you use n = 4s ▪ slight differences for grazing directions ▪ symmetric lobes for Phong, asymmetric for Blinn

! Blinn-Phong easier to code (?) (YMAMV)

24

Blinn-Phong or Phong

Page 25: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! “Improved Phong” ! “Perturb” the reflected direction vector

25

Lafortune Model

l = (lx,ly,lz )v = (vx,vy,vz )

Experimental Analysis of BRDF Models - SupplementalAddy Ngan, Frédo Durand and Wojciech Matusik

This document is supplemental to the paper titled Experimental Analysis of BRDF Models, published at Euro-graphics Symposium on Rendering 2005. In the following section we list the equations for the BRDF modelsemployed in our isotropic analysis. The rest of the document contains complete fitting results for the 100 isotropicmaterials, together with BRDF plots in the incidence plane, and sample images. For further information, pleaserefer to the original paper, and our project webpage at http://groups.csail.mit.edu/graphics/brdf.

BRDF ModelsThe formulations of the 7 models we use in our analysis are listed below. We enforce the diffuse contributionto Lambertian and omit the diffuse terms in the listing. The correspondences between the model parameters andour indexed parameters are shown next to the name of each model.

Common NotationsN normal

V , (vx,vy,vz) outgoing vector (view)L, (lx, ly, lz) incoming vector (light)

R mirror reflection of LH half vector⇥ angle between N and H

• Ward [p0 = �]

K = ⌅s ·1p

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Ward-Duer [p0 = �]

K = ⌅s ·1

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Blinn-Phong [p0 = n]

K = ⌅s ·n+2

2⇤cosn ⇥

• Lafortune et al. [p0 = Cxy, p1 = Cz, p2 = n]

K = ⌅s · [Cxy(lxvx + lyvy)+Czlzvz]n ·n+2

2⇤[max(|Cz|, |Cxy|)]n

where the last term is added to provide an approximate normalization.

• Cook-Torrance [p0 = F0, p1 = m]

K =⌅s

⇤DG

(N ·L)(N ·V )Fresnel(F0,V ·H)

where G = min{1, 2(N·H)(N·V )(V ·H) , 2(N·H)(N·L)

(V ·H) } and D = 1m2 cos4 ⇥ e�[(tan⇥)/m]2

1

Page 26: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

26

Fresnel coefficients

Experiment by Lafortune, Foo, Torrance & Greenberg (Siggraph 1997)

Page 27: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Reflection coefficients varying with viewing angle

! Interface between 2 materials, with different index: ▪ complex (metals) ▪ real (transparent / dielectric)

27

Fresnel Coefficients

Page 28: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Depends on material index, polarization ! Complicated formula

! Schlick Approximation:

28

Fresnel Coefficients

F = F0 + (1− F0)(1− cosθ )5

cosθ = (v • h)

Page 29: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Surface is made of micro-facets ▪ small specular mirrors

! Light reaching a facet: ▪ Reflected, masked, shadowed ▪ Statystical analysis, depending on micro-facets

orientation probability distribution ▪ A bit more complex. Good approximation.

29

Cook-Torrance-Sparrow model [1967]

Page 30: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Product of 3 terms ▪ Fresnel coefficient (F) ▪ Distribution of facets orientation (D) ▪ Masking and shadowing (G)

30

Cook-Torrance-Sparrow Model [1967]

Experimental Analysis of BRDF Models - SupplementalAddy Ngan, Frédo Durand and Wojciech Matusik

This document is supplemental to the paper titled Experimental Analysis of BRDF Models, published at Euro-graphics Symposium on Rendering 2005. In the following section we list the equations for the BRDF modelsemployed in our isotropic analysis. The rest of the document contains complete fitting results for the 100 isotropicmaterials, together with BRDF plots in the incidence plane, and sample images. For further information, pleaserefer to the original paper, and our project webpage at http://groups.csail.mit.edu/graphics/brdf.

BRDF ModelsThe formulations of the 7 models we use in our analysis are listed below. We enforce the diffuse contributionto Lambertian and omit the diffuse terms in the listing. The correspondences between the model parameters andour indexed parameters are shown next to the name of each model.

Common NotationsN normal

V , (vx,vy,vz) outgoing vector (view)L, (lx, ly, lz) incoming vector (light)

R mirror reflection of LH half vector⇥ angle between N and H

• Ward [p0 = �]

K = ⌅s ·1p

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Ward-Duer [p0 = �]

K = ⌅s ·1

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Blinn-Phong [p0 = n]

K = ⌅s ·n+2

2⇤cosn ⇥

• Lafortune et al. [p0 = Cxy, p1 = Cz, p2 = n]

K = ⌅s · [Cxy(lxvx + lyvy)+Czlzvz]n ·n+2

2⇤[max(|Cz|, |Cxy|)]n

where the last term is added to provide an approximate normalization.

• Cook-Torrance [p0 = F0, p1 = m]

K =⌅s

⇤DG

(N ·L)(N ·V )Fresnel(F0,V ·H)

where G = min{1, 2(N·H)(N·V )(V ·H) , 2(N·H)(N·L)

(V ·H) } and D = 1m2 cos4 ⇥ e�[(tan⇥)/m]2

1

Experimental Analysis of BRDF Models - SupplementalAddy Ngan, Frédo Durand and Wojciech Matusik

This document is supplemental to the paper titled Experimental Analysis of BRDF Models, published at Euro-graphics Symposium on Rendering 2005. In the following section we list the equations for the BRDF modelsemployed in our isotropic analysis. The rest of the document contains complete fitting results for the 100 isotropicmaterials, together with BRDF plots in the incidence plane, and sample images. For further information, pleaserefer to the original paper, and our project webpage at http://groups.csail.mit.edu/graphics/brdf.

BRDF ModelsThe formulations of the 7 models we use in our analysis are listed below. We enforce the diffuse contributionto Lambertian and omit the diffuse terms in the listing. The correspondences between the model parameters andour indexed parameters are shown next to the name of each model.

Common NotationsN normal

V , (vx,vy,vz) outgoing vector (view)L, (lx, ly, lz) incoming vector (light)

R mirror reflection of LH half vector⇥ angle between N and H

• Ward [p0 = �]

K = ⌅s ·1p

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Ward-Duer [p0 = �]

K = ⌅s ·1

(N ·L)(N ·V )· exp[� tan2 ⇥/�2]

4⇤�2

• Blinn-Phong [p0 = n]

K = ⌅s ·n+2

2⇤cosn ⇥

• Lafortune et al. [p0 = Cxy, p1 = Cz, p2 = n]

K = ⌅s · [Cxy(lxvx + lyvy)+Czlzvz]n ·n+2

2⇤[max(|Cz|, |Cxy|)]n

where the last term is added to provide an approximate normalization.

• Cook-Torrance [p0 = F0, p1 = m]

K =⌅s

⇤DG

(N ·L)(N ·V )Fresnel(F0,V ·H)

where G = min{1, 2(N·H)(N·V )(V ·H) , 2(N·H)(N·L)

(V ·H) } and D = 1m2 cos4 ⇥ e�[(tan⇥)/m]2

1

A gaussian distribution!

Page 31: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

31

Cook-Torrance-Sparrow Model [1967]

Acquired data Phong model

Page 32: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

32

Cook-Torrance-Sparrow Model [1967]

Acquired data Cook-Torrance model

Page 33: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

33

Cook-Torrance-Sparrow Model [1967]

Acquired data Cook-Torrance model

Page 34: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

34

Cook-Torrance-Sparrow Model [1967]

Acquired data Cook-Torrance, 2 lobes

Page 35: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! Map an image on the object surface = change BRDF parameters at every point

! Texture mapping

35

Spatially varying

BRDF only Textured

Page 36: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! BTF : Bidirectional Texture Function ▪ 6D : 2D in space + 4D for the BRDF ▪ Acquisition, compression and editing complex

36

Spatially varying

Texture BTF

Jan Kautz et al. 2007

Page 37: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! BSSRDF : Bidirectional surface scattering reflectance distribution function ▪ 8D function ▪ Subsurface Scattering ▪ Coûteux à évaluer

37

Volumetric variations

Ravi Ramamoorthi

Page 38: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! BSSRDF : Bidirectional surface scattering reflectance distribution function

38

Volumetric variations

BRDF BSSRDF

Henrik Wann Jensen, 2001

Page 39: Material representation, Reflectance, BRDFs - MAVERICKmaverick.inria.fr/~Nicolas.Holzschuch/cours/Slides/1b_Materiaux.pdf · 1b_Materiaux Author: Nicolas Holzschuch Created Date:

! BSSRDF : Bidirectional surface scattering reflectance distribution function

39

Volumetric variations

BRDF BSSRDFHenrik Wann Jensen, 2001