MarcPuche T.Reis Funnelcontrolfor boundarycontrolsystems...fakult t f rÊmathematik,Êinformatik...

31
fakultät für mathematik, informatik und naturwissenschaften Marc Puche Joint work with T. Reis & F. L. Schwenninger Funnel control for boundary control systems

Transcript of MarcPuche T.Reis Funnelcontrolfor boundarycontrolsystems...fakult t f rÊmathematik,Êinformatik...

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Marc PucheJoint work with T. Reis & F. L. Schwenninger

    Funnel control forboundary control systems

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Motivation

    Wave equation on the discFor t ≥ 0 and (r, θ) ∈ (0, 1] × [0, 2π) consider

    ∂tp(t, r, θ) = ∇r,θ · q(t, r, θ),∂tq(t, r, θ) = ∇r,θp(t, r, θ),

    u(t) = (η(r, θ) · q(t, r, θ))|r=1,

    y(t) =∫ 2π

    0p(t, 1, θ)dθ.

    u(t) is prescribed, y(t) is measured.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 2 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    MotivationAbstract formulation

    x :=(pq

    ) ẋ(t) = Ax(t), Ax =[

    0 ∇ · q∇p 0

    ],

    u(t) = Bx(t), Bx = (η · q)|Γ,

    y(t) = Cx(t), Cx =∫

    Γ p|Γdσ.

    Power12ddt

    ∥x(t)∥2L2 =∫

    Γp(t) η · q(t)︸ ︷︷ ︸

    Bx(t)

    = u(t)∫

    Γp(t)dσ︸ ︷︷ ︸Cx(t)

    = u(t)y(t)

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 3 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    MotivationAbstract formulation

    x :=(pq

    ) ẋ(t) = Ax(t), Ax =[

    0 ∇ · q∇p 0

    ],

    u(t) = Bx(t), Bx = (η · q)|Γ,

    y(t) = Cx(t), Cx =∫

    Γ p|Γdσ.

    Power12ddt

    ∥x(t)∥2L2 =∫

    Γp(t) η · q(t)︸ ︷︷ ︸

    Bx(t)

    = u(t)∫

    Γp(t)dσ︸ ︷︷ ︸Cx(t)

    = u(t)y(t)

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 3 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    MotivationAbstract formulation

    x :=(pq

    ) ẋ(t) = Ax(t), Ax =[

    0 ∇ · q∇p 0

    ],

    u(t) = Bx(t), Bx = (η · q)|Γ,

    y(t) = Cx(t), Cx =∫

    Γ p|Γdσ.

    Power12ddt

    ∥x(t)∥2L2 =∫

    Γp(t) η · q(t)︸ ︷︷ ︸

    Bx(t)

    dσ = u(t)∫

    Γp(t)dσ︸ ︷︷ ︸Cx(t)

    = u(t)y(t)

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 3 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    MotivationAbstract formulation

    x :=(pq

    ) ẋ(t) = Ax(t), Ax =[

    0 ∇ · q∇p 0

    ],

    u(t) = Bx(t), Bx = (η · q)|Γ,

    y(t) = Cx(t), Cx =∫

    Γ p|Γdσ.

    Power12ddt

    ∥x(t)∥2L2 =∫

    Γp(t) η · q(t)︸ ︷︷ ︸

    Bx(t)

    dσ = u(t)∫

    Γp(t)dσ︸ ︷︷ ︸Cx(t)

    = u(t)y(t)

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 3 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Motivation

    System

    Controller

    u(t) y(t)

    yref(t)

    Aim: Controller design so that “y(t) follows yref(t)”.Only “structural” assumptions on the model.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 4 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Funnel control

    System

    u(t) = λ(t) − k(t)e(t) +

    y(t)u(t)

    −yref(t)e(t)

    t

    1/φ(t)

    ∥e(t)∥Km

    k(t) = k01 − φ(t)2∥e(t)∥2

    λ ∈ W 2,∞c (R≥0;Km)

    First introduced byIlchmann, Ryan, Sangwin ’02

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 5 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    System class

    Boundary control systemX Hilbert space,m ∈ N. Consider

    (BCS)

    ẋ(t) = Ax(t), x(0) = x0 ∈ D(A) ⊂ X,u(t) = Bx(t),y(t) = Cx(t),

    whereB,C : D(A) ⊂ X → Km. We denote it byS = (A,B,C).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 6 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Controller design

    DefinitionLet ϵ > 0. We consider 1/φ(·)

    φ ∈ Φϵ :={

    φ ∈ W 2,∞(R≥0)∣∣∣ φ(0) = ϵ;∀t > 0, φ(t) > ϵ}

    to which we associateFφ := {(t, e) ∈ R≥0 × Km | φ(t)∥e∥ < 1}.

    t

    ±ϕ(t )−1±λ−1e(t )

    (0,e(0))

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 7 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Controller designAimApply toS = (A,B,C) the feedback law

    u(t) =(u0 +

    k01 − ϵ2∥e0∥2

    e0

    )p(t) − k0

    1 − φ(t)2∥e(t)∥2e(t),

    where

    k0 > 0;yref ∈ W 2,∞(R≥0;Km);p ∈ W 2,∞c (R≥0) with p(0) = 1;

    e := y − yref ;u0 := Bx0;φ ∈ Φϵ;

    for ϵ > 0 such that ϵ∥e0∥ < 1, where e0 := e(0).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 8 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Theorem (P. ’18)Assume that

    ∃α ∈ R such that ∀z ∈ D(A) it holds

    Re ⟨z,Az⟩X ≤ Re ⟨Bx,Cx⟩Km + α∥z∥2X (Generalized Passivity)

    A|kerB generates a C0-semigroup;[BC

    ]is onto, C : D(A|kerB) → Km continuous.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 9 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Theorem (P. ’18)Assume that

    ∃α ∈ R such that ∀z ∈ D(A) it holds

    Re ⟨z,Az⟩X ≤ Re ⟨Bx,Cx⟩Km + α∥z∥2X (Generalized Passivity)

    A|kerB generates a C0-semigroup;

    [BC

    ]is onto, C : D(A|kerB) → Km continuous.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 9 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Theorem (P. ’18)Assume that

    ∃α ∈ R such that ∀z ∈ D(A) it holds

    Re ⟨z,Az⟩X ≤ Re ⟨Bx,Cx⟩Km + α∥z∥2X (Generalized Passivity)

    A|kerB generates a C0-semigroup;[BC

    ]is onto, C : D(A|kerB) → Km continuous.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 9 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Theorem (P. ’18)Then ∃!x ∈ C1(R≥0;X) at a.e. t ≥ 0 such that

    ẋ(t) = Ax(t), x(0) = x0 ∈ D(A)Bx(t) = (u0 + ψ(ϵ, e0))p(t) − ψ(φ(t),Cx(t) − yref(t)),

    and u := Bx, y := Cx ∈ C(R≥0;Km) at a.e. t ≥ 0. Moreover, if α < 0, thenu, y ∈ L∞(R≥0;Km).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 10 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Outline of the proofTransformation

    x(t) = φ(t)−1z(t) +Qyref(t) + P (u0 + ψ(ϵ, e0))p(t),

    where [BC

    ] [P Q

    ]=

    [Im 0m0m Im

    ].

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 11 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main resultOutline of the proofSo that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0 ∈ D(A),

    where

    A(z) := A|D(A)z,D(A) := {z ∈ D(A) | ∥Cz∥ < 1,Bz + ϕ(Cz) = 0},

    ϕ(y) := k01 − ∥y∥2 y,

    D(ϕ) := {y ∈ Kn | ∥y∥ < 1},

    and ω := φ̇φ−1 ∈ W 1,∞(R≥0;R) and f ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 12 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main resultOutline of the proofSo that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0 ∈ D(A),

    whereA(z) := A|D(A)z,

    D(A) := {z ∈ D(A) | ∥Cz∥ < 1,Bz + ϕ(Cz) = 0},

    ϕ(y) := k01 − ∥y∥2 y,

    D(ϕ) := {y ∈ Kn | ∥y∥ < 1},

    and ω := φ̇φ−1 ∈ W 1,∞(R≥0;R) and f ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 12 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main resultOutline of the proofSo that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0 ∈ D(A),

    whereA(z) := A|D(A)z,

    D(A) := {z ∈ D(A) | ∥Cz∥ < 1,Bz + ϕ(Cz) = 0},

    ϕ(y) := k01 − ∥y∥2 y,

    D(ϕ) := {y ∈ Kn | ∥y∥ < 1},

    and ω := φ̇φ−1 ∈ W 1,∞(R≥0;R) and f ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 12 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main resultOutline of the proofSo that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0 ∈ D(A),

    whereA(z) := A|D(A)z,

    D(A) := {z ∈ D(A) | ∥Cz∥ < 1,Bz + ϕ(Cz) = 0},

    ϕ(y) := k01 − ∥y∥2 y,

    D(ϕ) := {y ∈ Kn | ∥y∥ < 1},

    and ω := φ̇φ−1 ∈ W 1,∞(R≥0;R) and f ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 12 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Outline of the proofKato-type Theorem:

    ∃! locally Lipschitz continuous z : R≥0 → X , such thatz(t) ∈ D(A) at every t ∈ R≥0;

    at a.e. t ∈ R≥0 it holds that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0,

    ż and A(z) are continuous at a.e. t ∈ R≥0.If α < 0 then z ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 13 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Outline of the proofKato-type Theorem:

    ∃! locally Lipschitz continuous z : R≥0 → X , such thatz(t) ∈ D(A) at every t ∈ R≥0;at a.e. t ∈ R≥0 it holds that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0,

    ż and A(z) are continuous at a.e. t ∈ R≥0.If α < 0 then z ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 13 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Outline of the proofKato-type Theorem:

    ∃! locally Lipschitz continuous z : R≥0 → X , such thatz(t) ∈ D(A) at every t ∈ R≥0;at a.e. t ∈ R≥0 it holds that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0,

    ż and A(z) are continuous at a.e. t ∈ R≥0.

    If α < 0 then z ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 13 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Main result

    Outline of the proofKato-type Theorem:

    ∃! locally Lipschitz continuous z : R≥0 → X , such thatz(t) ∈ D(A) at every t ∈ R≥0;at a.e. t ∈ R≥0 it holds that

    ż(t) = A(z(t)) + ω(t)z(t) + f(t),z(0) = z0,

    ż and A(z) are continuous at a.e. t ∈ R≥0.If α < 0 then z ∈ W 1,∞(R≥0;X).

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 13 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Example: Lossytransmission line

    Vζ(ζ, t) = −LIt(ζ, t) − RI(ζ, t),Iζ(ζ, t) = −CVt(ζ, t) − GV (ζ, t),

    u(t) =(

    V (a, t)V (b, t)

    ), y(t) =

    (I(a, t)

    −I(b, t)

    ).

    −1.0

    −0.5

    0.0

    0.5

    1.0

    y

    yref,1y1

    −1.0

    −0.5

    0.0

    0.5

    1.0

    y

    yref,2y2

    −100

    −75

    −50

    −25

    0

    25

    50

    75

    100

    u

    u1

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00t (µs)

    −40

    −20

    0

    20

    40

    u

    u2

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 14 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Example: 2D Waveequation on the unit disc

    ∂tp(t, r, θ) = ∇r,θ · q(t, r, θ),∂tq(t, r, θ) = ∇r,θp(t, r, θ),

    u(t) = (η(r, θ) · q(t, r, θ))|r=1,

    y(t) =∫ 2π

    0p(t, 1, θ)dθ.

    −0.0010

    −0.0005

    0.0000

    0.0005

    0.0010

    e

    e

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    y

    yref

    y

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0t (m)

    −1.0

    −0.5

    0.0

    0.5

    1.0

    u

    u

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 15 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Example: 2D Heatequation on the unit disc

    ∂tx(t, r, θ) = ∆r,θx(t, r, θ),u(t) = (∂rx(t, r, θ))|r=1,

    y(t) =∫ 2π

    0x(t, 1, θ)dθ.

    −1.0 −0.5 0.0 0.5 1.0−1.00

    −0.75

    −0.50

    −0.25

    0.00

    0.25

    0.50

    0.75

    1.00t = 1.25

    −1.0 −0.5 0.0 0.5 1.0−1.00

    −0.75

    −0.50

    −0.25

    0.00

    0.25

    0.50

    0.75

    1.00t = 2.5

    −1.0 −0.5 0.0 0.5 1.0−1.00

    −0.75

    −0.50

    −0.25

    0.00

    0.25

    0.50

    0.75

    1.00t = 3.75

    −1.0 −0.5 0.0 0.5 1.0−1.00

    −0.75

    −0.50

    −0.25

    0.00

    0.25

    0.50

    0.75

    1.00t = 5.0

    −0.03

    0.00

    0.03

    0.06

    0.09

    0.12

    0.15

    0.18

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    −0.150

    −0.125

    −0.100

    −0.075

    −0.050

    −0.025

    0.000

    −0.056

    −0.048

    −0.040

    −0.032

    −0.024

    −0.016

    −0.008

    0.000

    −0.010

    −0.005

    0.000

    0.005

    0.010

    e

    e

    −1.0

    −0.5

    0.0

    0.5

    1.0

    y

    yref

    y

    0 1 2 3 4 5t (s)

    −1.0

    −0.5

    0.0

    0.5

    1.0

    u

    u

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 16 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Conclusions

    Summary

    The funnel controller is feasible forS = (A,B,C);

    The approach works for hyperbolic and parabolic PDEs;S = (A,B,C) not necessarily well-posed.

    Further work

    Weak formulation in parabolic scenarios.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 17 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Conclusions

    Summary

    The funnel controller is feasible forS = (A,B,C);The approach works for hyperbolic and parabolic PDEs;

    S = (A,B,C) not necessarily well-posed.

    Further work

    Weak formulation in parabolic scenarios.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 17 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Conclusions

    Summary

    The funnel controller is feasible forS = (A,B,C);The approach works for hyperbolic and parabolic PDEs;S = (A,B,C) not necessarily well-posed.

    Further work

    Weak formulation in parabolic scenarios.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 17 / 17

  • fakultät

    für mathematik, informatik

    und naturwissenschaften

    Conclusions

    Summary

    The funnel controller is feasible forS = (A,B,C);The approach works for hyperbolic and parabolic PDEs;S = (A,B,C) not necessarily well-posed.

    Further work

    Weak formulation in parabolic scenarios.

    27.02.2019 | Marc Puche Joint work with T. Reis& F. L. Schwenninger - Funnel control for boundary control systems 17 / 17