Many-body Problems in QCD · 2010. 11. 8. · Hot matter:T ~1012K Dense matter:ρ ~1012...

36
T 10 12 K Hot matterρ 10 12 kg/cm 3 Dense matterNeutron liquid Quark Matter? Lattice QCD confronts experiments Japanese-German Seminar 2010 Nov. 6 (2010) at Mishima T. Hatsuda (University of Tokyo) Many-body Problems in QCD

Transcript of Many-body Problems in QCD · 2010. 11. 8. · Hot matter:T ~1012K Dense matter:ρ ~1012...

  • T ~1012K Hot matter: ρ ~ 1012 kg/cm3Dense matter:

    Neutronliquid

    QuarkMatter?

    Lattice QCD confronts experiments

    Japanese-German Seminar 2010 Nov. 6 (2010) at Mishima

    T. Hatsuda (University of Tokyo)

    Many-body Problems in QCD

  • 1. Introduction to QCD phase structure

    2. Hot QCD confronts RHIC/LHC experiments

    3. Dense QCD confronts neutron star observations

    4. Dense QCD confronts ultracold atomic experiments ?

    5. Summary

    Recent review:

    “The Phase Diagram of Dense QCD”K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 73 (2010)

    arXiv: 1005.4814 [hep-ph]

    contents

  • Symmetry realization in hot/dense QCD(for mu,d,s=0 case)

    QGP

    BRLC USUSUSU )1(])3()3([)3(

    QGP :

    Cabibbo & Parisi, PLB 59 (1975)Collins & Perry, PRL 34 (1975)

    0 Rt

    RL

    t

    L CqqCqqCFL :

    Alford, Rajagopal & Wilczek, NPB 537 (1999)

    RLRLC ZZSU )2()2()3(

    cSB :

    Nambu, PRL 4 (1960)

    BRLC USUSU )1()3()3(

    0RLqq

  • QCD vs. condensed matters

    cSB CSC

    QGP

    1. Competition between different orders

    2. Strong coupling

    Common features

    • Kitazawa, Nemoto, Kunihiro, PTP (‘02)

    • Abuki, Itakura & Hatsuda, PRD (’02)

    • Chen, Stajic, Tan & Levin, Phys. Rep. (’05) Dirac

    Fermi

  • Transition at Finite T

    cSB CSC

    QGP

  • Chiral field: ~

    Chiral transformation:

    Pisarski & Wilczek (‟84)

    Symmetry:

    Ginzburg-Landau-Wilson analysis in hot QCD

    SU(Nf)LxSU(Nf)RxU(1)A

    SU(Nf)LxSU(Nf)R

    quark mass term

    Axial anomaly

    X

    AfNZ )2(

  • Pisarski and Wilczek, PRD29 (‟84)

    Svetitsky & Yaffe, NPB210 (‟82)Order of the thermal QCD transition (μ=0)

    1st

    1st

    cross over

    2nd

    ms

    small

    larg

    e

    m u,dsmall large

    Nf=0

    Nf=1

    Nf=2

    Nf=3

  • Transition at Finite T

    cSB CSC

    QGP

    Asakawa-Yazaki CP

  • by T.D.Lee Tsinghua University, Beijing (photo by G. Baym)

    Relativistic Heavy Ion Collisions

    particle

    productionFreezeoutthermalization QGP hydrodynamic

    expansion

  • RHIC & LHC

    PHENIX@RHIC STAR@RHIC ALICE@LHC

  • Hot QCD confronts RHIC/LHC experiments

    Theoretical Inputs

    for equation of state

    for local correlations

    ・ Lattice QCD・ pQCD・ AdS/QCD

    Relativistic hydrodynamics

    for space-time evolution

    ∂μTμν =0

    Laudau (1953), Namiki & Iso (1957)・ 1D hydro by Bjorken (1983) ・ 3D hydrodynamics by

    Hirano, Muroya, Nonaka (2000-)

    lepton

    hadron

    jet

    charm

    bottom

    photon

  • Initial energy density

    Energ

    y D

    ensity

    (GeV

    /fm

    3 )

    AGS

    SPS

    RHIC

    c.m. energy / nucleon

    (GeV)

    Lattice QCD

  • 3D hydrodynamics with lattice EOS

    http://www.youtube.com/watch?v=p8_2TczsxjMby T. Hirano

    http://www.youtube.com/watch?v=p8_2TczsxjM

  • ・ State-of-the-art lattice EOS・ Full 3D hydrodynamics・ Experimental SPF at T=0

    Akamatsu, Hatsuda, Hamagaki, & Hirano (2010)

    Dilepton emission with lattice EOS

  • Predictions for LHC

    Hirano, Huovinen and Nara,arXiv:10106222 [nucl-th] Nov.1 (2010)

    ・State-of-the-art lattice EOSgiven by HOT QCD Coll.

    ・Full 3D hydrodynamics+ hadron cascade

  • Transition at finite μ

    cSB CSC

    QGP

    CP

    Neutronliquid

    QuarkMatter?

  • Nuclear Force and Neutron Star

    (ρmax ~ 6ρ0)

    PSR1913+16

    Neutron star binary

    Pressure balance

    gravity

    Repulsive core

    Fermi pressure

    Oppenheimer-Volkov(1939)

    NN

    NNN

  • Ozel, Baym & Guver, arXiv: 1002.3153 [astro-ph.HE]Steiner, Luttimer & Brown, arXiv: 1005.0811 [astro-ph.HE]

    From TOV to EOS

    M-R relation fromthermonuclear Burst in X-ray Binaries

  • Color superconductivity

    major differences from the standard BCS superconductor

    1. Relativistic fermi system

    color-magnetic int. dominant High Tc : Tc/eF ~ 0.1

    Compact pair : r~ 1-10 fm

    2. Color-flavor entanglementVarious phases (c.f. Ice, 3He)

    2SC, uSC, dSC, CFL etc

    flavor color

    u

    d s

    u

    d s

    u

    d s

    u

    d s

    CFLdSCuSC2SC

  • Pisarski & Wilczek, PRD29 (‟84) Iida & Baym, PRD63 (‟01) Yamamoto, Tachibana, Baym & Hatsuda, PRL97 (‟06)

    GL analysis for chiral-super interplay in QCD (Nf=3)

    Symmetry:

    Chiral field: diquark field:

    AZ )6(

  • Complete classification of the GL potential (mu,d,s=0)Yamamoto, Tachibana, Baym & Hatsuda, PRL 97 (‟06), PRD 76 („07)

    Axial anomaly

    RL ZZ )2()2( broken explicitly

  • Chiral-CFL interplay in Nf=3

    Natural parameter relations

  • phase diagram (without d-σ coupling)

    μ

    T

  • phase diagram (with d-σ coupling)

    Low T critical point driven by the axial anomaly

    T

    μ

  • phase diagram (with d-σ coupling & quark mass)

    h

    Low T critical point driven by the axial anomalyHigh T critical point driven by Higgs condensate

    T

    μ

  • Critical points from symmetry point of view

    Original idea : Hatsuda and Alford (2010)

    Figure taken fromSchmitt, Stetina & Tachibana, arXiv: 10104243 [hep-ph]

  • Spectral continuity at finite μ

    cSB CSC

    QGPCP induced by Higgs

    CP induced by anomaly

  • mco

    ndensa

    tes

    Continuity in the ground state

    Generalized Gell-Mann-Oakes-Renner relation :

    Yamamoto, Tachibana, Baym & T.H., PR D76 (‟07)

    Tachibana, Yamamoto and T.H.,PRD78 (2008)

    Continuity in excitation modes

    Vector meson – CFL gluon continuity (QCD sum rules):

  • diquark

    BCS

    Baryon

    BCSdiquark

    BEC

    Dense QCD confronts UCA experiments?

    “Simulating dense QCD matter with Ultracold atoms”Maeda, Baym and Hatsuda, Phys. Rev. Lett. 103 (2009) 085301

    Neutron

    matter

    quark

    Matter?

  • Ultracold Atoms (UCA)

    ・T ~ 10-7 K

    ・hyperfine states

    magnetically controllable

    ・density 1014 - 1015 cm-3

    ( cf. Air ~ 1019cm-3 )

    10 12

    10 9

    10 7

    T[K]

    10 2

    10

    1

    10 -3

    10 -7

    Quark-gluon plasma

    Superfluid neutron matter

    Center of sun

    Boiling waterFreezing water

    Liquid nitrogen

    Superfluid, superconductor

    Superfluid of 3He

    Ultracold atoms

    Neutron

    matter

    quark

    Matter?

  • b fσ

    s-wave boson-fermion

    scattering length

    strong weak

    0

    Maeda, Baym and Hatsuda, Phys. Rev. Lett. 103 (2009) 085301Atomic Boson-Fermion mixture

  • Induced superfluidity of composite fermions

    -- a novel analogy between cold atoms and QCD --

    Maeda, Baym & Hatsuda,Phys. Rev. Lett. 103 (‟09)

    Composite

    Fermion

    cold atoms dense QCD

    weak (bf)-(bf) attraction ⇔ strong b-f attraction baryon superfluidity ⇔ strong diqark correlation

  • Y. Nambu, Nobel Lecture (Dec.8, 2008), page 24/25

  • 1. QCD phase structure・ Three major phases in QCD: χSB, QGP and CSC

    ・ Axial anomaly plays crucial roles everywhere

    ・ Close similarity to high Tc supercond. & multi-comp. cold atoms

    2. Chiral-super interplay driven by axial anomaly・ A new critical point at low T and high μ

    ・ Continuity of χSB phase and CSC phase

    3. Spectral continuity in high density QCD・ Pions are pions.

    ・ Vector mesons are gluons.

    4. Near future・ Hot QCD confront LHC experiments

    ・ Dense QCD confronts neutron star observations

    ・ Dense QCD confronts ultracold atomic experiments

    Summary and Future

  • 1. QCD phase structure・ Three major phases in QCD: χSB, QGP and CSC

    ・ Axial anomaly plays crucial roles everywhere

    ・ Close similarity to high Tc supercond. & multi-comp. cold atoms

    2. Chiral-super interplay driven by axial anomaly・ A new critical point at low T and high μ

    ・ Continuity of χSB phase and CSC phase

    3. Spectral continuity in high density QCD・ Pions are pions.

    ・ Vector mesons are gluons.

    4. Near future・ Hot QCD confront LHC experiments

    ・ Dense QCD confronts neutron star observations

    ・ Dense QCD confronts ultracold atomic experiments

    Summary and Future

    RHIC/LHC

    LQCD Neutron

    stars

    UCA