Making Movies - Time Developmentggilfoyl/qm/slides/time3.pdf · Making Movies - Time Development...

14
Making Movies - Time Development Recall the rectangular initial wave packet in the infinite square well shown below. How does it evolve in time? V (x ) = 0 0 < x < a = x 0 and x a |Ψ(x , 0)i = 1 d x 0 x x 1 and d = x 0 - x 1 = 0 otherwise x 0 x 1 V(x) Ψ(x,0) 0 a x a =1.0 ˚ A x 0 =0.3 ˚ A x 1 =0.5 ˚ A Jerry Gilfoyle Time Development 1 / 13

Transcript of Making Movies - Time Developmentggilfoyl/qm/slides/time3.pdf · Making Movies - Time Development...

  • Making Movies - Time Development

    Recall the rectangular initial wave packet in the infinite square well shownbelow. How does it evolve in time?

    V (x) = 0 0 < x < a

    = ∞ x ≤ 0 and x ≥ a

    |Ψ(x , 0)〉 = 1√d

    x0 ≤ x ≤ x1 and d = x0 − x1

    = 0 otherwise

    x0 x1

    V(x)

    Ψ(x,0)

    0 a x

    a = 1.0 Åx0 = 0.3 Åx1 = 0.5 Å

    Jerry Gilfoyle Time Development 1 / 13

  • Probabilities of Different States

    a = 1.0 Å

    x0 = 0.3 Å

    x1 = 0.5 Å

    0 500 1000 1500 2000 2500 30000.0

    0.1

    0.2

    0.3

    0.4

    Energy (eV)

    Pro

    babili

    ty

    Rectangular Wave in a Square Well

    Jerry Gilfoyle Time Development 2 / 13

  • Time Development of a Square Wave

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    x

    Pro

    babili

    tyD

    ensity

    time=0.0000⨯10-16s.

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    x

    Pro

    babili

    tyD

    ensity

    time=0.0040⨯10-16s.

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    x

    Pro

    babili

    tyD

    ensity

    time=0.0080⨯10-16s.

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    8

    x

    Pro

    babili

    tyD

    ensity

    time=0.0120⨯10-16s.

    Jerry Gilfoyle Time Development 3 / 13

  • Comparison of Bound and Free Particles

    Particle in a Box

    The potential

    V =0 0 < x < a

    =∞ otherwise

    Eigenfunctions and eigenvalues

    |φn〉 =√

    2

    asin(nπx

    a

    )En = n

    2 ~2π2

    2ma2

    Superposition

    |ψ〉 =∞∑n=1

    bn|φn〉 〈φm|φn〉 = δm,n

    Getting the coefficients

    bn = 〈φn|ψ〉 Pn = |bn|2

    Free Particle

    The potential

    V = 0

    Eigenfunctions and eigenvalues

    |φ(k)〉 = 1√2π

    e±ikx E =~2k2

    2m

    Superposition

    |ψ〉 =∫ ∞−∞

    b(k)φ(k)dk

    〈φ(k ′)|φ(k)〉 =δ(k − k ′)

    Getting the coefficients

    b(k) = 〈φ(k)|ψ〉 Pn = |b(k)|2

    Jerry Gilfoyle Time Development 4 / 13

  • Time Development of the Initial Gaussian

    Recall the Gaussian initial wave packet for the free particle shown below.How does it evolve in time?

    V (x) = 0 |Ψ(x , 0)〉 = 1(2πσ2)1/4

    e−x2/4σ2

    -4 -2 0 2 40.0

    0.1

    0.2

    0.3

    0.4

    0.5

    x

    ψ

    Jerry Gilfoyle Time Development 5 / 13

  • Time Development of the Initial Gaussian

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    x

    |ψ2

    t=0

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    x

    |ψ2

    t=1.5

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    x

    |ψ2

    t=3.

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    x

    |ψ2

    t=4.5

    Jerry Gilfoyle Time Development 6 / 13

  • Time Development of Nuclear Fusion

    Consider a case of one dimensional nuclear ‘fusion’. A neutron is in thepotential well of a nucleus that we will approximate with an infinite squarewell with walls at x = 0 and x = L. The eigenfunctions and eigenvalues are

    En =n2~2π2

    2ma2φn =

    √2

    asin(nπx

    a

    )0 ≤ x ≤ a

    = 0 x < 0 and x > a .

    The neutron is in the n = 4 state when it fuses with another nucleus thatis the same size, instantly putting the neutron in a new infinite square wellwith walls at x = 0 and x = 2a.

    1 What are the new eigenfunctions and eigenvalues of the fused system?

    2 How will the initial wave packet evolve in time?

    Jerry Gilfoyle Time Development 7 / 13

  • Time Development of Nuclear Fusion

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    x(fm)

    |ψ2

    t=0×10-21 s

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    x(fm)

    |ψ2

    t=0.3×10-21 s

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    x(fm)

    |ψ2

    t=0.6×10-21 s

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    x(fm)

    |ψ2

    t=0.9×10-21 s

    Jerry Gilfoyle Time Development 8 / 13

  • Comparison of Bound and Free Particles

    Particle in a Box

    The potential

    V =0 0 < x < a

    =∞ otherwise

    Eigenfunctions and eigenvalues

    |φn〉 =√

    2

    asin(nπx

    a

    )En = n

    2 ~2π2

    2ma2

    Superposition

    |ψ〉 =∞∑n=1

    bn|φn〉 〈φm|φn〉 = δm,n

    Getting the coefficients

    bn = 〈φn|ψ〉 Pn = |bn|2

    Time Dependence

    Ψ(x , t) =∞∑n=1

    bn|φn(x)〉e−iωnt

    Free Particle

    The potential

    V = 0

    Eigenfunctions and eigenvalues

    |φ(k)〉 =1√

    2πe±ikx E =

    ~2k2

    2m

    Superposition

    |ψ〉 =∫ ∞−∞

    b(k)φ(k)dk

    〈φ(k ′)|φ(k)〉 =δ(k − k ′)

    Getting the coefficients

    b(k) = 〈φ(k)|ψ〉 Pn = |b(k)|2

    Time Dependence

    Ψ(x , t) =

    ∫ ∞−∞

    b(k)φk (x)e−iω(k)tdk

    Jerry Gilfoyle Time Development 9 / 13

  • Liboff 6.4 - 1

    Jerry Gilfoyle Time Development 10 / 13

  • Liboff 6.4 - 2

    Jerry Gilfoyle Time Development 11 / 13

  • Liboff 6.4 - 3

    Mathematica result

    Jerry Gilfoyle Time Development 12 / 13

  • Liboff 6.4 - 4

    Mathematica result

    Jerry Gilfoyle Time Development 13 / 13

  • Liboff 6.4 - 5

    Black Curve - Initial

    Probability

    Density.

    Red Curve - Probability

    Density at

    t = 10 s.

    Chance of being in

    the original box: 0.993

    0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.070

    2

    4

    6

    8

    10

    12

    x (m)

    |ψ2(m

    -1)

    Square Wave Time Development

    Jerry Gilfoyle Time Development 14 / 13