élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]!...

5
Technical Notes Converting Erdé lyi [1] to Bracewell [2, 3] Erdélyi defined his Hankel transform of order v as [1]: ( )( ) 1 2 0 (;) () gy fxJ xy xy dx υ υ = In this project, we just consider all the Hankel transforms of order 0. We unify the Erdélyi version into Bracewell’s version [2, 3], which is more easily related to standard Fourier transform notation. For f(x), we divided the functions by 12 x , and change x to 2 r π . For the Hankel transform, we divided the functions by 12 2 y π , and then change y to q directly. Classification For each function we made, we also marked its classification for the following criteria as true or false: 1) Oscillating 2) Finite domain 3) Singularity 4) Non negative 5) Monotonic 6) Eigen function You can use our search engine to find the functions which fit your own criteria. Notes 1) The range we chose for graphing each function is or 2 5, n r q n Z = × , based on the extent of each function. For example, when 1 n = , 1 2 5 0.4 r = × = ; when 0 n = , 0 2 5 2 r = × = So in our project, you can only find the range equal to 0.4, 2, 10, and 50 (maximum). 2) All the functions were made using Mathematica (Wolfram Research, Champaign, IL, USA), and for plotting purposes the Dirac Delta function is given a width of 0.2 and height of 1000. 3) All the functions are verified using numerical integration except for a few which are impossible to verify by numerical integration (for example the Dirac Delta function (bracewell_pg249_3)). 4) Π function’s definition

Transcript of élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]!...

Page 1: élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]! Erdélyidefinedhis!Hankel!transform!of!order!v!as![1]:! ( )( )1 2 0 gy f xJ xy xy dx(;) ()υ

Technical  Notes  

Converting  Erdé lyi  [1]  to  Bracewell  [2,  3]    Erdélyi  defined  his  Hankel  transform  of  order   v   as  [1]:  

( )( )12

0( ; ) ( )g y f x J xy xy dxυυ

∞= ∫  

In  this  project,  we  just  consider  all  the  Hankel  transforms  of  order  0.  We  unify  the  Erdélyi  version  into   Bracewell’s   version   [2,   3],   which   is   more   easily   related   to   standard   Fourier   transform  notation.  

Ø For  f(x),  we  divided  the  functions  by 1 2x ,  and  change  x  to 2 rπ .  

Ø For  the  Hankel  transform,  we  divided  the  functions  by 1 22 yπ ,  and  then  change   y   to   q  

directly.    

Classification  

 For  each  function  we  made,  we  also  marked  its  classification  for  the  following  criteria  as  true  or  false:  1) Oscillating  2) Finite  domain  3) Singularity  4) Non  negative  5) Monotonic  6) Eigen  function    You  can  use  our  search  engine  to  find  the  functions  which  fit  your  own  criteria.    

Notes  

1) The   range   we   chose   for   graphing   each   function   is   or 2 5 ,nr q n Z= × ∈ ,   based   on   the  

extent  of  each  function.    

For  example,  when   1n = − , 12 5 0.4r −= × = ;  when 0n = ,   02 5 2r = × =  So  in  our  project,  you  can  only  find  the  range  equal  to  0.4,  2,  10,  and  50  (maximum).  2) All   the   functions  were  made  using  Mathematica   (Wolfram  Research,  Champaign,   IL,  USA),  

and  for  plotting  purposes  the  Dirac  Delta  function  is  given  a  width  of  0.2  and  height  of  1000.  3) All   the   functions   are   verified   using   numerical   integration   except   for   a   few   which   are  

impossible   to   verify   by   numerical   integration   (for   example   the   Dirac   Delta   function  (bracewell_pg249_3)).  

4) Π   function’s  definition  

Page 2: élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]! Erdélyidefinedhis!Hankel!transform!of!order!v!as![1]:! ( )( )1 2 0 gy f xJ xy xy dx(;) ()υ

112102

x

x

⎧ <⎪⎪Π = ⎨

⎪ ≥⎪⎩

 

5) Orthogonal  polynomials  Legendre  polynomial  

( ) ( )21 12 !

n n

n n n

dP x xn dx

= −  

Jacobi  polynomial  

( ) ( ) ( ) ( ) ( ) ( ) ( ), 11 1 1 1

2 !

n nn n

n n n

dP x x x x xn dx

α β α βα β − − + +− ⎡ ⎤= − + − +⎣ ⎦  

 Laguerre  polynomial  

( ) ( )!

z nz n

n n

e z dL z e zn dz

αα α

−− +=  

( ) ( )0n nL z L z=  

6) Legendre  functions  

( )( ) ( )

12

2 11 1 1 1, 1;1 ; 2 21 1v

zP z F v v zz

µµ µ

µ+⎛ ⎞= − + − −⎜ ⎟Γ − −⎝ ⎠

 

( ) ( )( ) ( )

12 1

1 2 22 11 2

1 1 2 3 11 , ; ;2 3 2 2 2 2

iv

v v

e v v vQ z z z F vv z

µπµµ µπ µ µ µ− − −

+

Γ + + + + + +⎛ ⎞= − × +⎜ ⎟Γ + ⎝ ⎠

 z  in  the  complex  plane  cut  along  the  real  axis  from  -­‐1  to  1.  

( )( ) ( )

12

2 11 1 1 1, 1;1 ; , 1 12 21 1v

xP x F v v x xx

µµ µ

µ+⎛ ⎞= − + − − − < <⎜ ⎟Γ − −⎝ ⎠

 

( ) ( ) ( )1 12 21 0 0 , 1 1

2i ii

v v vQ x e e Q x i e Q x i xµπ µπµ µπ µ µ−− ⎡ ⎤

= + + − − < <⎢ ⎥⎣ ⎦

 

( ) ( ) ( ) ( )0 0, .v v v vP z P z Q z Q z= =  

7) Bessel  functions  and  related  functions  

( )( )

( )

2

0

112

! 1

v mm

vm

zJ z

m v m

+

=

⎛ ⎞− ⎜ ⎟⎝ ⎠=

Γ + +∑  

( ) ( ) ( )cosec cosv v vY z v J z v J zπ π −= −⎡ ⎤⎣ ⎦    

Page 3: élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]! Erdélyidefinedhis!Hankel!transform!of!order!v!as![1]:! ( )( )1 2 0 gy f xJ xy xy dx(;) ()υ

( ) ( ) ( ) ( )1v v vH z J z iY z= +  

( ) ( ) ( ) ( )2v v vH z J z iY z= −  

Modified  Bessel  functions  

( )( )

2

0

12

! 1

v m

vm

zI z

m v m

+

=

⎛ ⎞⎜ ⎟⎝ ⎠=Γ + +∑  

( ) ( ) ( )2 sin

v vv

I z I zK z

π− −

=  

Kelvin’s  and  related  functions  

( ) ( ) ( )14ber bei i

v v vz i z J ze π+ =  

( ) ( ) ( )14ber bei i

v v vz i z J ze π−− =  

( ) ( ) ( )14ker kei i

v v vz i z K ze π+ =  

( ) ( ) ( )14ker kei i

v v vz i z K ze π−− =  

( ) ( ) ( ) ( )0 0ber ber ,bei beiz z z z= =  

( ) ( ) ( ) ( )0 0ker ker ,kei keiz z z z= =  

Struve’s  functions  

( )( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( )

2 1

0

1

2

1 2

11 1 2

,

1 2H3 32 2

2 3 31; , ;2 2 43 32 2

12 2

v mm

vm

v

vv v

zz

m v m

zzF v

v

v s zπ

+ +

=

+

−− −

−=

Γ + Γ + +

= + −Γ Γ +

⎡ ⎤= Γ +⎣ ⎦

 

 8) Hypergeometric  functions  

( )( ) ( )( ) ( )1

1 10 1

...,..., ; ,..., ;

... !

kmk k

m n m nk nk k

a a zF a a zk

γ γγ γ

=

=∑  

( )2 1 , ; ;F a b c z   is   Gauss’denoted   by     hypergeometric   series   and   is   often   denoted   by

( ), ; ;F a b c z .  

Page 4: élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]! Erdélyidefinedhis!Hankel!transform!of!order!v!as![1]:! ( )( )1 2 0 gy f xJ xy xy dx(;) ()υ

( )1 1 , ; ;F a b c z   is  Kummer’s  confluent  hypergeometric  series  and  is  sometimes  denoted  by  

( ); ;a c zΦ .  

9) Confluent  hypergeometric  functions    Whittaker’s  function  

( ) ( )1 12 2

, 1 11 ;2 1;2

zkM z z e F k zµ

µ µ µ+ −

= + − +  

( )( ) ( )

( )( ) ( )

( ), ,

,

2 21 12 2

k kk

M z M zW z

k kµ µ

µ

µ µ

µ µ−Γ − Γ

= +Γ − − Γ + −

 

Parabolic  cylinder  functions  

( ) ( )1 1 1 22 4 21 1 1,2 4 4

12 2v

v vD z z W z+ −

+=  

( ) ( ) ( )2 21 14 21

nz zn

n n

dD z e edz

−= −  

  ( ) ( ) ( )sin 1si Ei Ei2x

tx dt ix ixt i

∞= − = − −⎡ ⎤⎣ ⎦∫  

  ( ) ( )sin 1Si si2x

tx dt xt

π∞

= = +∫  

  ( ) ( ) ( ) ( )cos 1Ci ci Ei Ei2x

tx dt x ix ixt i

∞= − = − = + −⎡ ⎤⎣ ⎦∫  

10) Elliptic  functions  and  integrals  

( ) ( ) ( )1 12 2 2 22

2 101 1 11 sin , ;1;2 2 2K k k d F k

πφ φ π

−= − =∫  

( ) ( ) ( )1 12 2 2 22

2 101 1 11 sin , ;1;2 2 2E k k d F k

πφ φ π= − = −∫  

       

Errors/Typos  in  books  1) erdelyi_8.2_17:  Added  to   the   2µ   power   to   the  end,   this  has  been  verified  by  numerical  

integration.  

2) erdelyi_8.2_38:   Changed   2a   to a .   There   is   no   reason   for   the   squared   there.   Added   a>0  constraint  to  compensate.    

3) erdelyi_8.2_39:     Changed   2a   to a .  There  is  no  reason  for  the  squared  there.  Added  a>0  constraint  to  compensate.  

Added   a   negative   sign   to ( )F q ,   numerical   integration   showed   that   it  

was  missing  the  negative  sign    

4) erdelyi_8.2_46:     b>0  is  required,  numerical  integration  fail  for  b=-­‐1,  (a<0  is  fine  since  all  a  term  is  square  of  symmetric)  

Page 5: élyi[1])toBracewell)[2,3] · Technical)Notes) Converting)Erdélyi[1])toBracewell)[2,3]! Erdélyidefinedhis!Hankel!transform!of!order!v!as![1]:! ( )( )1 2 0 gy f xJ xy xy dx(;) ()υ

5) erdelyi_8.2_47:   Changed   2a   to a .   There   is   no   reason   for   the   squared   there.   Added   a>0  constraint  to  compensate.  

6) erdelyi_8.3_4:  Replace   2x in  Hankel  transform  function  to 2y .  

7) erdelyi_8.3_7:  Replace   2x in  Hankel  transform  function  to 2y .  

8) erdelyi_8.3_43:  For ( )F q ,  multiply  factor  2,  verified  by  numerical  integration.  

9) Bracewell  Page335  Fig.  13.3  replace   ( )v∏   by   ( ) ( )2 2

v vπ πδ π δ π− + + .  

References  

1.   Erdélyi,   A.   and   H.   Bateman,   Tables   of   integral   transforms.   vol.   2.   1954,  McGraw-­‐Hill:   New  

York.  451.  

2.   Bracewell,   R.N.,   The   Fourier   transform   and   its   applications.   3rd   ed.   2000,   Boston:  

WCB/McGraw-­‐Hill.  

3.   Andrews,   L.C.,   B.K.   Shivamoggi,   and   Society   of   Photo-­‐optical   Instrumentation   Engineers.,  

Integral  transforms  for  engineers.  1999,  Bellingham,  Wash.:  SPIE  Optical  Engineering  Press.  x,  

353  p.  

4.   Andrews,  L.C.  and  R.L.  Phillips,  Mathematical   techniques   for  engineers  and  scientists.  2003,  

Bellingham:  SPIE-­‐The  International  Society  for  Optical  Engineering.  XV,  797  p.  

5.   Poularikas,   A.D.,  The   handbook   of   formulas   and   tables   for   signal   processing.   The   electrical  

engineering  handbook  series.  1999,  Boca  Raton,  Fla.  u.a.:  CRC  Press  u.a.  Getr.  Zählung   [ca.  

800  S.].  

6.   Parker,  K.J.,  Lecture  Notes,  Medical  Imaging:  Theory  and  Implementation.  2013,  University  of  

Rochester.  

7.   Bracewell,   R.N.,   Two-­‐dimensional   imaging.   Prentice-­‐Hall   signal   processing   series.   1995,  

Englewood  Cliffs,  N.J.:  Prentice  Hall.  xiv,  689  p.  

8.   Wikipedia.   Fourier   transform.   9   August   2013   21:20   UTC   Available   from:  

http://en.wikipedia.org/w/index.php?title=Fourier_transform&oldid=567869073.  

9.   Wikipedia.   Hankel   transform   9   August   2013   12:02   UTC   Available   from:  

http://en.wikipedia.org/w/index.php?title=Hankel_transform&oldid=567808780.  

10.   Waag,   R.C.,   J.A.   Campbell,   J.   Ridder,   and   P.R.   Mesdag,   Cross-­‐sectional   Measurements   and  

Exploitations   of   ultrasonic   fields.   1985,   IEEE   Transactions   on   Sonics   and   Ultrasonics  

32(1)26-­‐35.    

 

Acknowledgements  

We  are  grateful  to  the  Hajim  School  of  Engineering  and  Applied  Sciences  and  the  Wadsworth  C.  Sykes  Engineering  Faculty  Award  for  supporting  this  work.     The  excellent  work  of  University  of  Rochester   students   Shuopeng   Deng   and   Yuchuan   Zhuang   is   gratefully   noted.     We   are   also  indebted  to  Professor  Al  Clark  for  his  patient  advice.