Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications...

49
Challenge the future Delft University of Technology Luminescent materials for dosimetric applications Adrie J.J. Bos Delft University of Technology, The Netherlands

Transcript of Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications...

Page 1: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

Challenge the future

DelftUniversity ofTechnology

Luminescent materials for dosimetric applications

Adrie J.J. Bos

Delft University of Technology, The Netherlands

Page 2: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

2

Basic assumption: There is a relation between:

• light yield

and

• absorbed dose

Page 3: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

3

γ, X-rays, e-, p, HCP

ionisation storageheat

λemission

Steps in TL DosimetrySteps in TL Dosimetry

Luminescent material

1. Irradiation

2. Storage

3. Read-out

Page 4: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

4

Ionisation Storage Read-out

λstimulation λemission>

laserlaser

Steps in OSL DosimetrySteps in OSL Dosimetry

Luminescent material

γ, X-rays, e-, p, HCP

Q1: How is it energytically possible that Eem > Estim?

Page 5: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

5

Which luminescent material is a good Which luminescent material is a good

dosimetricdosimetric material?material?

• Application area• Type of radiation• Type of dosimetry

Page 6: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

6

Application areasApplication areas

• Personnel dosimetry• Extremity• Whole body

• Environmental dosimetry• Terrestrial• Space

• Medical dosimetry• Radiotherapy • Diagnostic radiology• Nuclear medicine

• High dose dosimetry• Radiation processing• Nuclear reactors

Page 7: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

7

Type of radiationType of radiation

• Low LET radiation• photons• betas• electrons

• High LET radiation• protons• Heavy Charged Particles (HCP)• neutrons

• UV radiation

Page 8: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

8

Type of DosimetryType of Dosimetry

• Passive

• Thermoluminescence Dosimetry (TLD)

• Optically Stimulated Luminescence Dosimetry (OSLD)

• Electron Paramagnetic Resonance (EPR)

• Film Dosimetry

• Active

• Fiber optic dosimetry

Source: Akselrod, et al. Radiat. Meas.

41(2007)S78

Page 9: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

9

• Sensitivity

• Linearity

• Appropriate energy dependence

• independence radiation energy

• tissue equivalent

• Long term stability

• Reproducible

• Easy to re-set, low residual

General requirementsGeneral requirements

Page 10: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

10

• Match luminescence spectrum with maximum sensitivity of PM tube

• Mechanically strong

• Chemically inert

• No effect of day light (for TL)

• Radiation resistant

• Batch homogeneity

• Simple reuse

• Low production price

Specific requirementsSpecific requirements

Page 11: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

11

Application areasApplication areas

• Personnel dosimetry 10-5 – 0.5• Extremity• Whole body

• Environmental dosimetry 10-7 – 10-2

• Terrestrial• Space

• Medical dosimetry• Radiotherapy 10-1 – 100• Diagnostic radiology 10-6 - 10-1

• Nuclear medicine

• High dose dosimetry• Radiation processing 101 - 106

• Nuclear reactors 103 - 109

Dose range (Gy)

Page 12: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

12

Application areasApplication areas

• Personnel dosimetry 10-5 – 0.5 -30, +50• Extremity• Whole body

• Environmental dosimetry 10-7 – 10-2 ±30• Terrestrial• Space

• Medical dosimetry• Radiotherapy 10-1 – 100 ?• Diagnostic radiology 10-6 - 10-1

• Nuclear medicine

• High dose dosimetry 15• Radiation processing 101 - 106

• Nuclear reactors 103 - 109

Dose range (Gy)

Uncertainty1SD (%)

Q2: Which uncertainty is required in radiotherapy?

Page 13: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

13

Application areasApplication areas

• Personnel dosimetry 10-5 – 0.5 -30, +50• Extremity• Whole body

• Environmental dosimetry 10-7 – 10-2 ±30• Terrestrial• Space

• Medical dosimetry• Radiotherapy 10-1 – 100 3.5• Diagnostic radiology 10-6 - 10-1

• Nuclear medicine

• High dose dosimetry 15• Radiation processing 101 - 106

• Nuclear reactors 103 - 109

Dose range (Gy)

Uncertainty1SD (%)

Page 14: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

14

Application areasApplication areas

• Personnel dosimetry 10-5 – 0.5 -30, +50 +• Extremity• Whole body

• Environmental dosimetry 10-7 – 10-2 ±30 ++• Terrestrial• Space

• Medical dosimetry• Radiotherapy 10-1 – 100 3.5 +• Diagnostic radiology 10-6 - 10-1 3.5 +• Nuclear medicine

• High dose dosimetry 15 -• Radiation processing 101 - 106

• Nuclear reactors 103 - 109

Dose range (Gy)

Uncertaint1SD (%) Fading

Page 15: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

15

Application areasApplication areas

• Personnel dosimetry 10-5 – 0.5 -30, +50 + +• Extremity• Whole body

• Environmental dosimetry 10-7 – 10-2 ±30 ++ ±• Terrestrial• Space

• Medical dosimetry• Radiotherapy 10-1 – 100 3.5 + ++• Diagnostic radiology 10-6 - 10-1 3.5 + +• Nuclear medicine

• High dose dosimetry 15 - - -• Radiation processing 101 - 106

• Nuclear reactors 103 - 109

Dose range (Gy)

Uncertainty 1 SD (%) Fading TE

Page 16: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

16

From (1) and (2):

tissueen

TLen

tissue

TL

D

D

)/(

)/(

ρµρµ=

)1()/( TLenTL ED ρµΦ=

( / ) (2)tissue en tissueD E µ ρ= Φ

Tissue equivalence for Photons Tissue equivalence for Photons

16.9CaF2

7.32Li2B4O7

7.21BeO

7.51Water

7.77Air

8.31LiF

7.35Soft tissue

ZeffMaterial

Page 17: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

17

Tissue equivalence for neutronsTissue equivalence for neutrons

( / )trD K E µ ρ≈ =Φ

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7

Neutron energy (eV)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Ker

ma

coef

ficie

nt (

pGy

cm2)

tissue

tissue

N

C

O

O

C

H

N

H

H (0,101)

C (0,111)

N (0,026)

O (0,762)

mass

fraction( / )tr

KE µ ρ=

Φ

(NH4)2BeF4:Tl+

(NH4)2SiF6:Tl+

Page 18: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

18

LuminescenceLuminescence efficiencyefficiency

How efficiently transform TL/OSL materials absorbed energy into light?

i

energy emitted

energy absorbedη =

photonsN h

mD

ν=

Page 19: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

19

Type of luminescence Induced by Application Efficiency (%) Black body radiation Photoluminescence Cathodoluminescence Electroluminescence Thermoluminescence

Heat Photons Electrons Electric field Ionising radiation

Tungsten filament lamp Fluorescent lamp Television screen LED, flat panel display Dosimetry, Dating

∼5% ∼20% ∼10% 0.1-50%

LuminescenceLuminescence phenomenaphenomena, , applicationsapplications

and and typicaltypical efficienciesefficiencies

Q3: ηTLD-100 ?

A: 0.01%

B: 0.10%

C: 1.0%

D: 10%

Page 20: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

20

• creation of electron-hole pairs (neh∼ Eγ/Weh=hν/βEg)

• thermalisation and trapping (ηtr)

• release of charge carriers from the trap (p)

• transfer to luminescent centre (S)

• de-excitation of the Luminescent Centre (Q)

• escape from the sample (ηesc)

Steps in the energy conversion process

i tr escg

hpSQ

E

νη η ηβ

=

ηesc

Valence band

Cond. band

S

Q

p

Eg

ηtr

Page 21: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

21

LuminescenceLuminescence efficiencyefficiency

Suppose: ηtr = 1, p = 1, S = 1, Q = 1, ηesc = 1

i tr escg

hpSQ

E

νη η ηβ

=

,maxig

h

E

νηβ

=

Valence band

Cond. band

S

Q

p

Eg

ηtr

Page 22: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

22

ηηi,maxi,max and and ηηexpexp for some TL materialsfor some TL materials

Eg hν ηi,max ηexp TL material eV β nm eV % % LiF:Mg,Ti 13.6 1.7 410 3.02 13 0.032 – 0.039 LiF:Mg,Cu,P 0.91

CaF2:Dy(TLD-200) 12.6 1.8 480 2.58 11 4.1

CaF2:Cu,Ho 12.6 1.8 390 3.18 14

CaF2:Tm 0.29

CaF2:Mn 0.44

KMgF3:Ce 12.6 2 360 3.44 14

BeO 10.6 2 335 3.70 17 CaSO4:Dy 9.5 2 575 2.16 11 CaSO4:Mn 1.2

Al2O3:C 8.7 2.7 420 2.95 13 0.84

Li2B4O7:Mn 8.5 2 620 2.00 12 0.3 C (diamond) 5.5 2.9 498 2.49 16

Average ∼13 ∼1

Page 23: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

23

• creation e-h pairs ~13%

• trapping (ηtr): ?

• release of charge carriers from the trap (p) ++

• transfer to luminescent centre (S) - +

• de-excitation of the Luminescent Centre (Q) - +

• escape from the sample (ηesc) +

Efficiency various stepsEfficiency various steps

Conclusion:

the trapping efficiency plays a dominant role in the overall effciency

Page 24: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

24

Well known TL/OSL materialsWell known TL/OSL materials

• LiF family

• CaSO4:RE (RE= Dy, Tm, Sm)

• CaF2:Mn

• Li2B4O7:Mn

• MgB4O7:Dy,Na

• Al2O3:C

• BeO

• Al2O3:C• BeO• SrS:Ce,Sm••

Q4: Which class of materials do not show TL?

Page 25: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

25

LiFLiF familyfamily

• LiF: Mg,Ti

•Patent 1963

•Thermo Electron (TLD-100,TLD-600, TLD-700)

•TLD Poland: LiF:MT

• LiF: Mg,Cu,P

• First mentioned by Nakajima et al. 1978

• SSDL, Beijng, Cina: GR200

• Nemoto, Japan, NTL-500

• Thermo Electron: TLD100H

• TLD Poland: LiF:MCP

Page 26: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

26

Glow curves Glow curves LiFLiF

Source: Bilski., Radiat. Prot. Dosim. 100(2002)199

LiF:Mg,Cu,P

LiF:Mg,Ti

Page 27: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

27

Dose responseDose response

Source: P. Olko, in: Y.S. Horowitz: Microdosimetricresponse … (Elsevier, Amsterdam, 2006)

0

0

( ) ( )( )

TL D TL Df D

D D=

Linear: f(D) = 1

supralinear: f(D) >1

sublinear: f(D) < 1

Page 28: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

28

Role of Role of dopantsdopants

LiF:Mg,Ti LiF:Mg,Cu.P

Mg: 0.01 – 0.02% Mg: 0.2%

Ti: 10 – 15 ppm P: 1 – 4%

Cu: 0.02 -0.5%

Anneal procedure

1 h 400 °C 10 min @240 °C

24 h 80 °C

Page 29: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

29

TLD TLD cyclecycle

Page 30: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

30

GlowGlow curve TLDcurve TLD--100 100 afterafter storagestorage

Page 31: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

31

Requirements OSL materialRequirements OSL material

• Sensitivity

• Trapping centres:

i) Thermally stable

ii) Optically accessible

• Good separation between emission and stimulation bands

• Dose erasure by optically bleaching

Page 32: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

32

OSL reader (schematic)OSL reader (schematic)

1 mW laser: 1017 photons cm-2 s-1

OSL-signal: < 106 photons cm-2 s-1

Q5: What is the role of the colour filter?

Page 33: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

33

AlAl22OO33:C:C

• before 1990: Al2O3 known as TL material

• 1990: anion-deficient Al2O3:C developed as high sensitive TL material

• 1995: OSL material

• Application in

• Personnel dosimetry

• Environmental dosimetry

• Retrospectrive dosimetry

• Dating applications (equivalent to quartz)

Q6: What is the role of C?

A: Trapping centre

B: Luminescent centre

C: None of both

Page 34: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

34

Emission and stimulation spectra of AlEmission and stimulation spectra of Al22OO33:C:C

Source: Botter-Jensen et al. Radiat. Meas. 22 (1997) 715.

350 400 450 500 550 600 650 7000

100

200

300

Em

issi

on in

tens

ity (

a.u.

)

Emission wavelength (nm)

e- + F+ → F* → F + hν420 nm

Page 35: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

35

OSLOSL--signal of signal of Al2O3:CAl2O3:C

0 10 20 30 40 50

Tijd (s)

10|2

10|3

10|4

10|5

stimulatie = 470 nm

0 mGy

1

24

7

15

30 mGy

Time (s)

λstimulation = 470 nmO

SL s

ignal (a

.u)

Page 36: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

36

Dose responseDose response

Source: Akselrod and McKeever, Radiat. Protec. Dosim. 81 (1999) 167

Kodak XV-2 film

120 kVp

280 kVp 60Co

6MV photons

20 MeV electron

Source:

Mota, et al. Phys. Med. Biol. 35 (1990) 565

Page 37: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

37

Environmental dosimetry

Source: Bøtter-Jensen et al. Radiat. Meas. 27 (1997) 295-298

Page 38: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

38

BeOBeO

• Known for a long time as TL material

(used in routine personnel dosimetry by the ENEA-Italy dosimetry service)

• Relatively low TL sensitivity

• Strong TL self-absorption

• Strong supralinearity

• Highly tissue equivalent;

Zeff(BeO) = 7.2 ; Zeff(tissue) = 7.4

• Rediscovered as OSL material (Bulur, Sommer et al.)

Page 39: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

39

BeOBeO: OSL dose response: OSL dose response

0 50 100 150 200 250 300 350 400 450 500

102

103

104

105

106

1 mGy 2 mGy 4 mGy 8 mGy 16 mGy 32 mGy 64 mGy 128 mGy 256 mGy

OS

L si

gnal

(co

unts

/cha

nnel

)

Time (s)

BeO Batch 5

1 10 100

106

107

108

BeO batch 5

Inte

grat

ed lu

min

esce

nce

(cou

nts)

Dose (mGy)

OSL (9 - 509 s)

Page 40: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

40

BeOBeO: dose response: dose response

1 10 100104

105

106

107

108BeO batch 5

Inte

grat

ed lu

min

esce

nce

(cou

nts)

Dose (mGy)

TL (130 - 360 °C) OSL (9 - 509 s)

0.1 1 10 100 1000102

103

104

105

106

107

108

Inte

grat

ed L

umin

esce

nce

(cou

nts)

Dose (Gy)

Batch 5 (OSL: 0 - 250 s) Batch 5 (TL: 100-300 °C)

Page 41: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

41

CuCu++ doped fused quartzdoped fused quartz

Source: Justus et al Radiat. Protec. Dosim. 81(1999)5

λstimulation= 790 nm

X = 2 R

Page 42: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

42

MgO:TbMgO:Tb3+3+

1 2 3 4 5 6 7 8 9 10

101

102

103

104

0 mGy 1 mGy 2 mGy 4 mGy 8 mGy 16 mGy 32 mGy 64 mGy 128 mGy 256 mGy 512 mGy 10 24 mGy 2048 mGy 4096 mGy 8192 mGy

OSL from a "Single Grain"

OS

L si

gnal

(ar

b. u

nits

)

Time (s)

100 101 102 103 104

101

102

103

104

105

Inte

grat

ed O

SL

sign

alDose (mGy)

λstimulation= 470 nm

Irradiation: 90Y/90Sr

Page 43: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

43

MgO:TbMgO:Tb3+ 3+ : Fading : Fading

0 50 100 150 200 250 300 350 400 450

1

3

2

Temperature (°C)

-5 0 5 10 15 20 25 30 35 400

10

20

30

40

50

60

70

80

90

100

Time (h)

Nor

mal

ised

sig

nal

OSL TL peak 1+2 TL peak 3

Page 44: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

44

SrS:Ce,SmSrS:Ce,Sm

Source: Lapraz te al. Phys. Stat. Sol. (a) 203 (2006) 3793

λstimulation= 1.04 µm

Irradiation: UV (350 nm)

Page 45: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

45

SrS:Ce,SmSrS:Ce,Sm comparison with Alcomparison with Al22OO33:C:C

• Emission and stimulation bands are well separated

• No deep traps, SrS is fully reset after reading

• Strong fading

Source: Lapraz et al. Phys. Stat. Sol. (a) 203 (2006) 3793

Benoit et al. University of Montpellier, France

a = TL signal; b = OSL signal

Page 46: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

46

Attractive features:

• Tissue equivalent

• Chemical inertness

• Radiation hardness

• Physically robust

• Safe for in vivo use

Chemical Vapor Deposition (CVD) DiamondChemical Vapor Deposition (CVD) Diamond

Page 47: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

47

Chemical Chemical VapourVapour Deposition DiamondDeposition Diamond

Source: Goncalves et al Optical Materials 27(2005)1231

B doped B doped

Page 48: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

48

Problems with CVD DiamondProblems with CVD Diamond

• Fading of the TL signal

• Sensitivity to daylight

• Poor linearity

• Poor reproducibility

Page 49: Luminescent materials for dosimetricapplicationsLuminescent materials for dosimetricapplications Adrie J.J. Bos Delft University of Technology, The Netherlands 2 Basic assumption:

49

Concluding remarks

• The development of new dosimetric materials goes slowly

• The market is dominated by LiF and Al2O3

• Even of well-known dosimetric materials the exact mechanism is unknown

• The key issue in developing an improved dosimetric material is

a high concentration of stable trapping centres

that can be synthesized in a reproducible way