LIGHT UNFLAVORED MESONS - Particle Data...

548
4/30/2010 19:56 Page 1 LIGHT UNFLAVORED MESONS LIGHT UNFLAVORED MESONS LIGHT UNFLAVORED MESONS LIGHT UNFLAVORED MESONS NODE=MXXX005 (S = C = B = 0) (S = C = B = 0) (S = C = B = 0) (S = C = B = 0) For I =1(π, b, ρ, a): u d ,(u u-d d )/ 2, d u; NODE=MXXX005 for I =0(η, η 0 , h, h 0 , ω, φ, f , f 0 ): c 1 (u u + d d )+ c 2 (s s ) NODE=M014 f 0 (600) or σ I G (J PC )=0 + (0 ++ ) A REVIEW GOES HERE – Check our WWW List of Reviews NODE=M014 f 0 (600) T-MATRIX POLE s f 0 (600) T-MATRIX POLE s f 0 (600) T-MATRIX POLE s f 0 (600) T-MATRIX POLE s NODE=M014PP Note that Γ 2 Im( p s pole ). NODE=M014PP NODE=M014PP VALUE (MeV) DOCUMENT ID TECN COMMENT (400–1200)-i(250–500) OUR ESTIMATE (400–1200)-i(250–500) OUR ESTIMATE (400–1200)-i(250–500) OUR ESTIMATE (400–1200)-i(250–500) OUR ESTIMATE NOT CHECKED ••• We do not use the following data for averages, fits, limits, etc. ••• (455 ± 6 +31 -13 )-i(556 ± 12 +68 -86 ) 1 CAPRINI 08 RVUE Compilation OCCUR=2 (463 ± 6 +31 -17 )-i(518 ± 12 +66 -68 ) 2 CAPRINI 08 RVUE Compilation (552 + 84 -106 )-i(232 +81 -72 ) 3 ABLIKIM 07A BES2 ψ(2S ) π + π - J (466 ± 18)-i(223 ± 28) 4 BONVICINI 07 CLEO D + π - π + π + (472 ± 30)-i(271 ± 30) 5 BUGG 07A RVUE Compilation (484 ± 17)-i(255 ± 10) GARCIA-MAR...07 RVUE Ke4 (441 +16 - 8 )-i(272 +9 -12.5 ) 6 CAPRINI 06 RVUE ππ ππ (470 ± 50)-i(285 ± 25) 7 ZHOU 05 RVUE (541 ± 39)-i(252 ± 42) 8 ABLIKIM 04A BES2 J ωπ + π - (528 ± 32)-i(207 ± 23) 9 GALLEGOS 04 RVUE Compilation (440 ± 8)-i(212 ± 15) 10 PELAEZ 04A RVUE ππ ππ (533 ± 25)-i(247 ± 25) 11 BUGG 03 RVUE 532 - i272 BLACK 01 RVUE π 0 π 0 π 0 π 0 (470 ± 30)-i(295 ± 20) 6 COLANGELO 01 RVUE ππ ππ (535 +48 -36 )-i(155 +76 -53 ) 12 ISHIDA 01 Υ(3S ) Υ ππ 610 ± 14 - i620 ± 26 13 SUROVTSEV 01 RVUE ππ ππ, K K (558 +34 -27 )-i(196 +32 -41 ) ISHIDA 00B p p π 0 π 0 π 0 445 - i235 HANNAH 99 RVUE π scalar form factor (523 ± 12)-i(259 ± 7) KAMINSKI 99 RVUE ππ ππ, K K , σσ 442 - i 227 OLLER 99 RVUE ππ ππ, K K 469 - i203 OLLER 99B RVUE ππ ππ, K K 445 - i221 OLLER 99C RVUE ππ ππ, K K , ηη (1530 + 90 -250 )-i(560 ± 40) ANISOVICH 98B RVUE Compilation 420 - i 212 LOCHER 98 RVUE ππ ππ , K K (602 ± 26)-i(196 ± 27) 14 ISHIDA 97 ππ ππ (537 ± 20)-i(250 ± 17) 15 KAMINSKI 97B RVUE ππ ππ, K K ,4π 470 - i250 16,17 TORNQVIST 96 RVUE ππ ππ, K K , K π, ηπ (1100 - i300) AMSLER 95B CBAR pp 3π 0 400 - i500 17,18 AMSLER 95D CBAR pp 3π 0 OCCUR=2 1100 - i137 17,19 AMSLER 95D CBAR pp 3π 0 387 - i305 17,20 JANSSEN 95 RVUE ππ ππ, K K 525 - i269 21 ACHASOV 94 RVUE ππ ππ (506 ± 10)-i(247 ± 3) KAMINSKI 94 RVUE ππ ππ, K K 370 - i356 22 ZOU 94B RVUE ππ ππ, K K 408 - i342 17,22 ZOU 93 RVUE ππ ππ, K K 870 - i370 17,23 AU 87 RVUE ππ ππ, K K 470 - i208 24 VANBEVEREN 86 RVUE ππ ππ, K K , ηη, ... (750 ± 50)-i(450 ± 50) 25 ESTABROOKS 79 RVUE ππ ππ, K K (660 ± 100)-i(320 ± 70) PROTOPOP... 73 HBC ππ ππ, K K 650 - i370 26 BASDEVANT 72 RVUE ππ ππ

Transcript of LIGHT UNFLAVORED MESONS - Particle Data...

  • 4/30/2010 19:56 Page 1

    LIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONS NODE=MXXX005(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)

    For I = 1 (π, b, ρ, a): ud , (uu−dd)/√

    2, du; NODE=MXXX005for I = 0 (η, η′, h, h′, ω, φ, f , f ′): c1(uu + d d) + c2(s s)

    NODE=M014

    f0(600)or σ

    IG (JPC ) = 0+(0 + +)

    A REVIEW GOES HERE – Check our WWW List of Reviews NODE=M014

    f0(600) T-MATRIX POLE√

    sf0(600) T-MATRIX POLE√

    sf0(600) T-MATRIX POLE√

    sf0(600) T-MATRIX POLE√

    s NODE=M014PP

    Note that Γ ≈ 2 Im(√spole). NODE=M014PP

    NODE=M014PPVALUE (MeV) DOCUMENT ID TECN COMMENT

    (400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE → NOT CHECKED ←• • • We do not use the following data for averages, fits, limits, etc. • • •

    (455±6+31−13)−i(556±12+68−86)

    1 CAPRINI 08 RVUE Compilation

    OCCUR=2(463±6+31−17)−i(518±12+66−68)

    2 CAPRINI 08 RVUE Compilation

    (552+ 84−106)−i(232+81−72)

    3 ABLIKIM 07A BES2 ψ(2S) → π+π− J/ψ(466 ± 18)−i(223 ± 28) 4 BONVICINI 07 CLEO D+ → π−π+π+(472 ± 30)−i(271 ± 30) 5 BUGG 07A RVUE Compilation(484 ± 17)−i(255 ± 10) GARCIA-MAR...07 RVUE Ke4(441+16− 8)−i(272

    + 9−12.5)

    6 CAPRINI 06 RVUE ππ → ππ(470 ± 50)−i(285 ± 25) 7 ZHOU 05 RVUE(541 ± 39)−i(252 ± 42) 8 ABLIKIM 04A BES2 J/ψ → ωπ+π−(528 ± 32)−i(207 ± 23) 9 GALLEGOS 04 RVUE Compilation(440 ± 8)−i(212 ± 15) 10 PELAEZ 04A RVUE ππ → ππ(533 ± 25)−i(247 ± 25) 11 BUGG 03 RVUE532− i272 BLACK 01 RVUE π0π0 → π0π0(470 ± 30)−i(295 ± 20) 6 COLANGELO 01 RVUE ππ → ππ(535+48−36)−i(155

    +76−53)

    12 ISHIDA 01 Υ(3S) → Υ ππ610 ± 14− i620 ± 26 13 SUROVTSEV 01 RVUE ππ → ππ, K K(558+34−27)−i(196

    +32−41) ISHIDA 00B pp → π

    0π0π0

    445− i235 HANNAH 99 RVUE π scalar form factor(523 ± 12)−i(259 ± 7) KAMINSKI 99 RVUE ππ → ππ, K K , σσ442− i 227 OLLER 99 RVUE ππ → ππ, K K469− i203 OLLER 99B RVUE ππ → ππ, K K445− i221 OLLER 99C RVUE ππ → ππ, K K , ηη(1530+ 90−250)−i(560 ± 40) ANISOVICH 98B RVUE Compilation420− i 212 LOCHER 98 RVUE ππ → ππ , K K(602 ± 26)−i(196 ± 27) 14 ISHIDA 97 ππ → ππ(537 ± 20)−i(250 ± 17) 15 KAMINSKI 97B RVUE ππ → ππ, K K , 4π470− i250 16,17 TORNQVIST 96 RVUE ππ → ππ, K K , K π,

    ηπ∼ (1100− i300) AMSLER 95B CBAR pp → 3π0400− i500 17,18 AMSLER 95D CBAR pp → 3π0

    OCCUR=21100− i137 17,19 AMSLER 95D CBAR pp → 3π0387− i305 17,20 JANSSEN 95 RVUE ππ → ππ, K K525− i269 21 ACHASOV 94 RVUE ππ → ππ(506 ± 10)−i(247 ± 3) KAMINSKI 94 RVUE ππ → ππ, K K370− i356 22 ZOU 94B RVUE ππ → ππ, K K408− i342 17,22 ZOU 93 RVUE ππ → ππ, K K870− i370 17,23 AU 87 RVUE ππ → ππ, K K470− i208 24 VANBEVEREN 86 RVUE ππ → ππ, K K , ηη,

    ...(750 ± 50)−i(450 ± 50) 25 ESTABROOKS 79 RVUE ππ → ππ, K K(660 ± 100)−i(320 ± 70) PROTOPOP... 73 HBC ππ → ππ, K K650− i370 26 BASDEVANT 72 RVUE ππ → ππ

  • 4/30/2010 19:56 Page 2

    1 From the Ke4 data of BATLEY 08A and πN → ππN data of HYAMS 73. NODE=M014PP;LINKAGE=CA2From the Ke4 data of BATLEY 08A and πN → ππN data of PROTOPOPESCU 73, NODE=M014PP;LINKAGE=APGRAYER 74, and ESTABROOKS 74.

    3 From a mean of three different f0(600) parametrizations. Uses 40k events. NODE=M014PP;LINKAGE=AL4From an isobar model using 2.6k events. NODE=M014PP;LINKAGE=BO5Reanalysis of ABLIKIM 04A, PISLAK 01, and HYAMS 73 data. NODE=M014PP;LINKAGE=BU6From the solution of the Roy equation (ROY 71) for the isoscalar S-wave and using a NODE=M014PP;LINKAGE=CLphase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.

    7Reanalysis of the data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, NODE=M014PP;LINKAGE=ZHROSSELET 77, PISLAK 03, and AKHMETSHIN 04.

    8 From a mean of six different analyses and f0(600) parameterizations. NODE=M014PP;LINKAGE=AB9Using data on ψ(2S) → J/ψππ from BAI 00E and on Υ(nS) → Υ(mS)ππ from NODE=M014PP;LINKAGE=GABUTLER 94B and ALEXANDER 98.

    10Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, and NODE=M014PP;LINKAGE=PECOHEN 80 in the unitarized ChPT model.

    11 From a combined analysis of HYAMS 73, AUGUSTIN 89, AITALA 01B, and PISLAK 01. NODE=M014PP;LINKAGE=PS12A similar analysis (KOMADA 01) finds (580+79−30)−i(190

    +107− 49) MeV. NODE=M014PP;LINKAGE=KI

    13Coupled channel reanalysis of BATON 70, BENSINGER 71, BAILLON 72, HYAMS 73, NODE=M014PP;LINKAGE=SUHYAMS 75, ROSSELET 77, COHEN 80, and ETKIN 82B using the uniformizing variable.

    14Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 NODE=M014PP;LINKAGE=AAusing the interfering amplitude method.

    15Average and spread of 4 variants (“up” and “down”) of KAMINSKI 97B 3-channel model. NODE=M014PP;LINKAGE=E16Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA- NODE=M014PP;LINKAGE=B

    SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavorsymmetry and all light two-pseudoscalars systems.

    17Demonstrates explicitly that f0(600) and f0(1370) are two different poles. NODE=M014PP;LINKAGE=G18Coupled channel analysis of pp → 3π0, π0 ηη and π0π0 η on sheet II. NODE=M014PP;LINKAGE=L19Coupled channel analysis of pp → 3π0, π0 ηη and π0π0 η on sheet III. NODE=M014PP;LINKAGE=M20Analysis of data from FALVARD 88. NODE=M014PP;LINKAGE=C21Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80. NODE=M014PP;LINKAGE=D22Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77. NODE=M014PP;LINKAGE=F23Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83. NODE=M014PP;LINKAGE=H24Coupled-channel analysis using data from PROTOPOPESCU 73, HYAMS 73, NODE=M014PP;LINKAGE=BV

    HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, COR-DEN 79, BISWAS 81.

    25Analysis of data from APEL 73, GRAYER 74, CASON 76, PAWLICKI 77. Includes spread NODE=M014PP;LINKAGE=Aand errors of 4 solutions.

    26Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72,PRO- NODE=M014PP;LINKAGE=JTOPOPESCU 73, and WALKER 67.

    f0(600) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(600) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(600) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(600) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS NODE=M014M

    NODE=M014MVALUE (MeV) DOCUMENT ID TECN COMMENT

    (400–1200) OUR ESTIMATE(400–1200) OUR ESTIMATE(400–1200) OUR ESTIMATE(400–1200) OUR ESTIMATE → NOT CHECKED ←513±32 27 MURAMATSU 02 CLEO e+ e− ≈ 10 GeV

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    478+24−23±17 AITALA 01B E791 D+ → π−π+π+

    563+58−2928 ISHIDA 01 Υ(3S) → Υ ππ

    555 29 ASNER 00 CLE2 τ− → π−π0π0 ντ540±36 ISHIDA 00B pp → π0π0π0750± 4 ALEKSEEV 99 SPEC 1.78 π− ppolar → π

    −π+ n744± 5 ALEKSEEV 98 SPEC 1.78 π− ppolar → π

    −π+ n759± 5 30 TROYAN 98 5.2 np → npπ+π−780±30 ALDE 97 GAM2 450 pp → ppπ0π0585±20 31 ISHIDA 97 ππ → ππ761±12 32 SVEC 96 RVUE 6–17 πN polar → π

    +π−N∼ 860 33,34 TORNQVIST 96 RVUE ππ → ππ, K K , K π, ηπ

    1165±50 35,36 ANISOVICH 95 RVUE π− p → π0π0 n,pp → π0π0π0, π0π0 η, π0 ηη

    ∼ 1000 37 ACHASOV 94 RVUE ππ → ππ414±20 32 AUGUSTIN 89 DM2

  • 4/30/2010 19:56 Page 3

    27 Statistical uncertainty only. NODE=M014M;LINKAGE=UT28A similar analysis (KOMADA 01) finds 526+48−37 MeV. NODE=M014M;LINKAGE=KI29 From the best fit of the Dalitz plot. NODE=M014M;LINKAGE=KK30 6σ effect, no PWA. NODE=M014M;LINKAGE=TN31Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 NODE=M014M;LINKAGE=AA

    using the interfering amplitude method.32Breit-Wigner fit to S-wave intensity measured in πN → π−π+N on polarized targets. NODE=M014M;LINKAGE=E

    The fit does not include f0(980).33Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, NODE=M014M;LINKAGE=B

    CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor sym-metry and all light two-pseudoscalars systems.

    34Also observed by ASNER 00 in τ− → π−π0π0 ντ decays. NODE=M014M;LINKAGE=GG35Uses π0π0 data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, π+π− data from NODE=M014M;LINKAGE=F

    OCHS 73, GRAYER 74 and ROSSELET 77, and ηη data from ANISOVICH 94.36The pole is on Sheet III. Demonstrates explicitly that f0(600) and f0(1370) are two NODE=M014M;LINKAGE=G

    different poles.37Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80. NODE=M014M;LINKAGE=D

    f0(600) BREIT-WIGNER WIDTHf0(600) BREIT-WIGNER WIDTHf0(600) BREIT-WIGNER WIDTHf0(600) BREIT-WIGNER WIDTH NODE=M014W

    NODE=M014WVALUE (MeV) DOCUMENT ID TECN COMMENT

    (600–1000) OUR ESTIMATE(600–1000) OUR ESTIMATE(600–1000) OUR ESTIMATE(600–1000) OUR ESTIMATE → NOT CHECKED ←335± 67 38 MURAMATSU 02 CLEO e+ e− ≈ 10 GeV

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    324+ 42− 40±21 AITALA 01B E791 D+ → π−π+π+

    372+229− 9539 ISHIDA 01 Υ(3S) → Υ ππ

    540 40 ASNER 00 CLE2 τ− → π−π0π0 ντ372± 80 ISHIDA 00B pp → π0π0π0119± 13 ALEKSEEV 99 SPEC 1.78 π− ppolar → π

    −π+ n77± 22 ALEKSEEV 98 SPEC 1.78 π− ppolar → π

    −π+ n35± 12 41 TROYAN 98 5.2 np → npπ+π−

    780± 60 ALDE 97 GAM2 450 pp → ppπ0π0385± 70 42 ISHIDA 97 ππ → ππ290± 54 43 SVEC 96 RVUE 6–17 πN polar → π

    +π−N∼ 880 44,45 TORNQVIST 96 RVUE ππ → ππ, K K , K π, ηπ

    460± 40 46,47 ANISOVICH 95 RVUE π− p → π0π0 n,pp → π0π0π0, π0π0 η, π0 ηη

    ∼ 3200 48 ACHASOV 94 RVUE ππ → ππ494± 58 43 AUGUSTIN 89 DM2

    38Statistical uncertainty only. NODE=M014W;LINKAGE=UT39A similar analysis (KOMADA 01) finds 301+145−100 MeV. NODE=M014W;LINKAGE=KI40 From the best fit of the Dalitz plot. NODE=M014W;LINKAGE=KK41 6σ effect, no PWA. NODE=M014W;LINKAGE=TN42Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 NODE=M014W;LINKAGE=AA

    using the interfering amplitude method.43Breit-Wigner fit to S-wave intensity measured in πN → π−π+N on polarized targets. NODE=M014W;LINKAGE=E

    The fit does not include f0(980).44Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, NODE=M014W;LINKAGE=B

    CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor sym-metry and all light two-pseudoscalars systems.

    45Also observed by ASNER 00 in τ− → π−π0π0 ντ decays. NODE=M014W;LINKAGE=GG46Uses π0π0 data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, π+π− data from NODE=M014W;LINKAGE=F

    OCHS 73, GRAYER 74 and ROSSELET 77, and ηη data from ANISOVICH 94.47The pole is on Sheet III. Demonstrates explicitly that f0(600) and f0(1370) are two NODE=M014W;LINKAGE=G

    different poles.48Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80. NODE=M014W;LINKAGE=D1

    f0(600) DECAY MODESf0(600) DECAY MODESf0(600) DECAY MODESf0(600) DECAY MODES NODE=M014215;NODE=M014

    Mode Fraction (Γi /Γ)

    DESIG=1;OUR EST;→ NOT CHECKED ←Γ1 ππ dominantDESIG=5;OUR EST;→ NOT CHECKED ←Γ2 γ γ seen

  • 4/30/2010 19:56 Page 4

    f0(600) PARTIAL WIDTHSf0(600) PARTIAL WIDTHSf0(600) PARTIAL WIDTHSf0(600) PARTIAL WIDTHS NODE=M014220

    Γ(

    γ γ)

    Γ2Γ(

    γ γ)

    Γ2Γ(

    γ γ)

    Γ2Γ(

    γ γ)

    Γ2 NODE=M014W2NODE=M014W2VALUE (keV) DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •1.2±0.4 49 BERNABEU 08 RVUE3.9±0.6 50 MENNESSIER 08 RVUE γ γ → π+π−, π0π04.1±0.3 51 PENNINGTON 06 RVUE γ γ → π0π03.8±1.5 52,53 BOGLIONE 99 RVUE γ γ → π+π−, π0π05.4±2.3 52 MORGAN 90 RVUE γ γ → π+π− , π0π0

    10 ±6 COURAU 86 DM1 e+ e− → π+π− e+ e−49Using p, n polarizabilities from PDG 06 and fitting to ππ phase motion from GARCIA- NODE=M014W2;LINKAGE=BE

    MARTIN 07 and σ-poles from GARCIA-MARTIN 07 and CAPRINI 06.50Using an analytic K-matrix model. NODE=M014W2;LINKAGE=ME51Using unitarity and the σ pole position from CAPRINI 06. NODE=M014W2;LINKAGE=PE52This width could equally well be assigned to the f0(1370). The authors analyse data from NODE=M014W2;LINKAGE=A

    BOYER 90 and MARSISKE 90 and report strong correlation with γ γ width of f2(1270).53 Supersedes MORGAN 90. NODE=M014W2;LINKAGE=BL

    f0(600) REFERENCESf0(600) REFERENCESf0(600) REFERENCESf0(600) REFERENCES NODE=M014

    REFID=52487BATLEY 08A EPJ C54 411 J.R. Batley et al. (CERN NA48/2 Collab.)REFID=52271BERNABEU 08 PRL 100 241804 J. Bernabeu, J. Prades (IFIC, GRAN)REFID=52273CAPRINI 08 PR D77 114019 I. CapriniREFID=52299MENNESSIER 08 PL B665 205 G. Mennessier, S. Narison, W. OchsREFID=51614ABLIKIM 07A PL B645 19 M. Ablikim et al. (BES Collab.)REFID=51721BONVICINI 07 PR D76 012001 G. Bonvicini et al. (CLEO Collab.)REFID=53252BUGG 07A JPG 34 151 D.V. Bugg et al.REFID=51949GARCIA-MAR... 07 PR D76 074034 R. Garcia-Martin, J.R. Pelaez, F.J. YndurainREFID=51076CAPRINI 06 PRL 96 132001 I. Caprini, G. Colangelo, H. Leutwyler (BCIP+)REFID=51004PDG 06 JPG 33 1 W.-M. Yao et al. (PDG Collab.)REFID=51184PENNINGTON 06 PRL 97 011601 M.R. PenningtonREFID=50823ZHOU 05 JHEP 0502 043 Z.Y. Zhou et al.REFID=49740ABLIKIM 04A PL B598 149 M. Ablikim et al. (BES Collab.)REFID=49609AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=49769GALLEGOS 04 PR D69 074033 A. Gallegos et al.REFID=50347PELAEZ 04A MPL A19 2879 J.R. PelaezREFID=49586BUGG 03 PL B572 1 D.V. BuggREFID=49344PISLAK 03 PR D67 072004 S. Pislak et al. (BNL E865 Collab.)REFID=49081MURAMATSU 02 PRL 89 251802 H. Muramatsu et al. (CLEO Collab.)REFID=49385Also PRL 90 059901 (erratum)H. Muramatsu et al. (CLEO Collab.)REFID=48005AITALA 01B PRL 86 770 E.M. Aitala et al. (FNAL E791 Collab.)REFID=48314BLACK 01 PR D64 014031 D. Black et al.REFID=49180COLANGELO 01 NP B603 125 G. Colangelo, J. Gasser, H. LeytwylerREFID=48354ISHIDA 01 PL B518 47 M. Ishida et al.REFID=48541KOMADA 01 PL B508 31 T. Komada et al.REFID=48433PISLAK 01 PRL 87 221801 S. Pislak et al. (BNL E865 Collab.)REFID=49344Also PR D67 072004 S. Pislak et al. (BNL E865 Collab.)REFID=48310SUROVTSEV 01 PR D63 054024 Y.S. Surovtsev, D. Krupa, M. NagyREFID=47339ASNER 00 PR D61 012002 D.M. Asner et al. (CLEO Collab.)REFID=47955BAI 00E PR D62 032002 J. Bai et al. (BES Collab.)REFID=48358ISHIDA 00B PTP 104 203 M. Ishida et al.REFID=46614ALEKSEEV 99 NP B541 3 I.G. Alekseev et al.REFID=46931BOGLIONE 99 EPJ C9 11 M. Boglione, M.R. PenningtonREFID=46935HANNAH 99 PR D60 017502 T. HannahREFID=46927KAMINSKI 99 EPJ C9 141 R. Kaminski, L. Lesniak, B. Loiseau (CRAC, PARIN)REFID=46899OLLER 99 PR D60 099906 (erratum)J.A. Oller et al.REFID=46924OLLER 99B NP A652 407 (erratum) J.A. Oller, E. OsetREFID=47386OLLER 99C PR D60 074023 J.A. Oller, E. OsetREFID=46328ALEKSEEV 98 PAN 61 174 I.G. Alekseev et al.REFID=46329ALEXANDER 98 PR D58 052004 J.P. Alexander et al. (CLEO Collab.)REFID=46331ANISOVICH 98B SPU 41 419 V.V. Anisovich et al.

    Translated from UFN 168 481.REFID=46372LOCHER 98 EPJ C4 317 M.P. Locher et al. (PSI)REFID=46615TROYAN 98 JINRRC 5-91 33 Yu. Troyan et al.REFID=45392ALDE 97 PL B397 350 D.M. Alde et al. (GAMS Collab.)REFID=45998ISHIDA 97 PTP 98 1005 S. Ishida et al. (TOKY, MIYA, KEK)REFID=45778KAMINSKI 97B PL B413 130 R. Kaminski, L. Lesniak, B. Loiseau (CRAC, IPN)REFID=45770Also PTP 95 745 S. Ishida et al. (TOKY, MIYA, KEK)REFID=44509SVEC 96 PR D53 2343 M. Svec (MCGI)REFID=44507TORNQVIST 96 PRL 76 1575 N.A. Tornqvist, M. Roos (HELS)REFID=44375ALDE 95B ZPHY C66 375 D.M. Alde et al. (GAMS Collab.)REFID=44377AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)REFID=44441AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)REFID=44442ANISOVICH 95 PL B355 363 V.V. Anisovich et al. (PNPI, SERP)REFID=44508JANSSEN 95 PR D52 2690 G. Janssen et al. (STON, ADLD, JULI)REFID=44087ACHASOV 94 PR D49 5779 N.N. Achasov, G.N. Shestakov (NOVM)REFID=44093AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)REFID=43659ANISOVICH 94 PL B323 233 V.V. Anisovich et al. (Crystal Barrel Collab.)REFID=43799BUTLER 94B PR D49 40 F. Butler et al. (CLEO Collab.)REFID=45771KAMINSKI 94 PR D50 3145 R. Kaminski, L. Lesniak, J.P. Maillet (CRAC+)REFID=44072ZOU 94B PR D50 591 B.S. Zou, D.V. Bugg (LOQM)

  • 4/30/2010 19:56 Page 5

    REFID=43672ZOU 93 PR D48 R3948 B.S. Zou, D.V. Bugg (LOQM)REFID=41862ARMSTRONG 91B ZPHY C52 389 T.A. Armstrong et al. (ATHU, BARI, BIRM+)REFID=41362BOYER 90 PR D42 1350 J. Boyer et al. (Mark II Collab.)REFID=41351MARSISKE 90 PR D41 3324 H. Marsiske et al. (Crystal Ball Collab.)REFID=41583MORGAN 90 ZPHY C48 623 D. Morgan, M.R. Pennington (RAL, DURH)REFID=41004AUGUSTIN 89 NP B320 1 J.E. Augustin, G. Cosme (DM2 Collab.)REFID=40262ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)REFID=40576FALVARD 88 PR D38 2706 A. Falvard et al. (CLER, FRAS, LALO+)REFID=40064AU 87 PR D35 1633 K.L. Au, D. Morgan, M.R. Pennington (DURH, RAL)REFID=44510COURAU 86 NP B271 1 A. Courau et al. (CLER, LALO)REFID=45769VANBEVEREN 86 ZPHY C30 615 E. van Beveren et al. (NIJM, BIEL)REFID=20752CASON 83 PR D28 1586 N.M. Cason et al. (NDAM, ANL)REFID=20390ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)REFID=21106BISWAS 81 PRL 47 1378 N.N. Biswas et al. (NDAM, ANL)REFID=20381COHEN 80 PR D22 2595 D. Cohen et al. (ANL) IJPREFID=44528MUKHIN 80 JETPL 32 601 K.N. Mukhin et al. (KIAE)

    Translated from ZETFP 32 616.REFID=21084BECKER 79 NP B151 46 H. Becker et al. (MPIM, CERN, ZEEM, CRAC)REFID=20374CORDEN 79 NP B157 250 M.J. Corden et al. (BIRM, RHEL, TELA+) JPREFID=20375ESTABROOKS 79 PR D19 2678 P. Estabrooks (CARL)REFID=21072FROGGATT 77 NP B129 89 C.D. Froggatt, J.L. Petersen (GLAS, NORD)REFID=20367PAWLICKI 77 PR D15 3196 A.J. Pawlicki et al. (ANL) IJREFID=11004ROSSELET 77 PR D15 574 L. Rosselet et al. (GEVA, SACL)REFID=21064CASON 76 PRL 36 1485 N.M. Cason et al. (NDAM, ANL) IJREFID=20642ESTABROOKS 75 NP B95 322 P.G. Estabrooks, A.D. Martin (DURH)REFID=20355HYAMS 75 NP B100 205 B.D. Hyams et al. (CERN, MPIM)REFID=21062SRINIVASAN 75 PR D12 681 V. Srinivasan et al. (NDAM, ANL)REFID=20111ESTABROOKS 74 NP B79 301 P.G. Estabrooks, A.D. Martin (DURH)REFID=20113GRAYER 74 NP B75 189 G. Grayer et al. (CERN, MPIM)REFID=44532APEL 73 PL 41B 542 W.D. Apel et al. (KARL, PISA)REFID=20107HYAMS 73 NP B64 134 B.D. Hyams et al. (CERN, MPIM)REFID=20349OCHS 73 Thesis W. Ochs (MPIM, MUNI)REFID=20108PROTOPOP... 73 PR D7 1279 S.D. Protopopescu et al. (LBL)REFID=20093BAILLON 72 PL 38B 555 P.H. Baillon et al. (SLAC)REFID=20095BASDEVANT 72 PL 41B 178 J.L. Basdevant, C.D. Froggatt, J.L. Petersen (CERN)REFID=44530BEIER 72B PRL 29 511 E.W. Beier et al. (PENN)REFID=21006BENSINGER 71 PL 36B 134 J.R. Bensinger et al. (WISC)REFID=44533COLTON 71 PR D3 2028 E.P. Colton et al. (LBL, FNAL, UCLA+)REFID=51107ROY 71 PL 36B 353 S.M. RoyREFID=20086BATON 70 PL 33B 528 J.P. Baton, G. Laurens, J. Reignier (SACL)REFID=20960WALKER 67 RMP 39 695 W.D. Walker (WISC)

    NODE=M009

    ρ(770) IG (JPC ) = 1+(1 −−)

    A REVIEW GOES HERE – Check our WWW List of Reviews NODE=M009

    ρ(770) MASSρ(770) MASSρ(770) MASSρ(770) MASS NODE=M009205

    We no longer list S-wave Breit-Wigner fits, or data with high combinatorial NODE=M009205background.

    NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e− NODE=M009M0NODE=M009M0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

    775.49±0.34 OUR AVERAGE775.49±0.34 OUR AVERAGE775.49±0.34 OUR AVERAGE775.49±0.34 OUR AVERAGE775.97±0.46±0.70 900k 1 AKHMETSHIN 07 e+ e− → π+π−774.6 ±0.4 ±0.5 800k 2,3 ACHASOV 06 SND e+ e− → π+π−775.65±0.64±0.50 114k 4,5 AKHMETSHIN 04 CMD2 e+ e− → π+π−775.9 ±0.5 ±0.5 1.98M 6 ALOISIO 03 KLOE 1.02 e+ e− →

    π+π−π0775.8 ±0.9 ±2.0 500k 6 ACHASOV 02 SND 1.02 e+ e− →

    π+π−π0775.9 ±1.1 7 BARKOV 85 OLYA e+ e− → π+π−• • • We do not use the following data for averages, fits, limits, etc. • • •

    OCCUR=2775.8 ±0.5 ±0.3 1.98M 8 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    OCCUR=3775.9 ±0.6 ±0.5 1.98M 9 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    OCCUR=3775.0 ±0.6 ±1.1 500k 10 ACHASOV 02 SND 1.02 e+ e− →π+π−π0

    775.1 ±0.7 ±5.3 11 BENAYOUN 98 RVUE e+ e− → π+π−,µ+µ−

    770.5 ±1.9 ±5.1 12 GARDNER 98 RVUE 0.28–0.92 e+ e− →π+π−

    764.1 ±0.7 13 O’CONNELL 97 RVUE e+ e− → π+π−757.5 ±1.5 14 BERNICHA 94 RVUE e+ e− → π+π−768 ±1 15 GESHKEN... 89 RVUE e+ e− → π+π−

  • 4/30/2010 19:56 Page 6

    CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e− NODE=M009M5NODE=M009M5VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE774.6 ±0.2 ±0.5 5.4M 16,17 FUJIKAWA 08 BELL ± τ− → π−π0 ντ775.5 ±0.7 17,18 SCHAEL 05C ALEP τ− → π−π0 ντ775.5 ±0.5 ±0.4 1.98M 6 ALOISIO 03 KLOE 1.02 e+ e− →

    π+π−π0775.1 ±1.1 ±0.5 87k 19,20 ANDERSON 00A CLE2 τ− → π−π0 ντ• • • We do not use the following data for averages, fits, limits, etc. • • •

    OCCUR=2774.8 ±0.6 ±0.4 1.98M 9 ALOISIO 03 KLOE − 1.02 e+ e− →π+π−π0

    OCCUR=3776.3 ±0.6 ±0.7 1.98M 9 ALOISIO 03 KLOE + 1.02 e+ e− →π+π−π0

    773.9 ±2.0 +0.3−1.021 SANZ-CILLERO03 RVUE τ− → π−π0 ντ

    OCCUR=2774.5 ±0.7 ±1.5 500k 6 ACHASOV 02 SND ± 1.02 e+ e− →π+π−π0

    775.1 ±0.5 22 PICH 01 RVUE τ− → π−π0 ντ

    MIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONS NODE=M009M7NODE=M009M7VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    763.0±0.3±1.2763.0±0.3±1.2763.0±0.3±1.2763.0±0.3±1.2 600k 23 ABELE 99E CBAR 0± 0.0 pp →π+π−π0

    NODE=M009M3

    CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED NODE=M009M2NODE=M009M2VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE763.7±3.2 ABELE 97 CBAR pn → π−π0π0768 ±9 AGUILAR-... 91 EHS 400 pp767 ±3 2935 24 CAPRARO 87 SPEC − 200 π−Cu →

    π−π0CuOCCUR=2761 ±5 967 24 CAPRARO 87 SPEC − 200 π−Pb →

    π−π0Pb771 ±4 HUSTON 86 SPEC + 202 π+A →

    π+π0A766 ±7 6500 25 BYERLY 73 OSPK − 5 π− p766.8±1.5 9650 26 PISUT 68 RVUE − 1.7–3.2 π− p, t

  • 4/30/2010 19:56 Page 7

    • • • We do not use the following data for averages, fits, limits, etc. • • •773.5±2.5 33 COLANGELO 01 RVUE ππ → ππ762.3±0.5±1.2 600k 34 ABELE 99E CBAR 0 0.0 pp → π+π−π0777 ±2 4943 35 ADAMS 97 E665 470 µp → µXB770 ±2 36 BOGOLYUB... 97 MIRA 32 pp → π+π−X

    OCCUR=2768 ±8 36 BOGOLYUB... 97 MIRA 32 pp → π+π−X761.1±2.9 DUBNICKA 89 RVUE π form factor777.4±2.0 37 CHABAUD 83 ASPK 0 17 π− p polarized769.5±0.7 30,31 LANG 79 RVUE 0770 ±9 31 ESTABROOKS 74 RVUE 0 17 π− p → π+π− n773.5±1.7 11200 24 JACOBS 72 HBC 0 2.8 π− p775 ±3 2250 HYAMS 68 OSPK 0 11.2 π− p

    WEIGHTED AVERAGE769.0±0.9 (Error scaled by 1.4)

    PISUT 68 RVUE 0.0REYNOLDS 69 HBC 2.8RATCLIFF 72 ASPK 2.8PROTOPOP... 73 HBC 2.2ENGLER 74 DBC 0.2DEUTSCH... 76 HBC 1.0WICKLUND 78 ASPK 0.0BOHACIK 80 RVUE 0.1HEYN 81 RVUE 0.2AGUILAR-... 91 EHS 6.1WEIDENAUER 93 ASTE 6.2BERTIN 97C OBLX 0.4

    χ2

    22.1(Confidence Level = 0.023)

    750 760 770 780 790 800

    ρ(770)0 mass (MeV)1A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05. NODE=M009M0;LINKAGE=AK2Supersedes ACHASOV 05A. NODE=M009M0;LINKAGE=AC3A fit of the SND data from 400 to 1000 MeV using parameters of the ρ(1450) and NODE=M009M0;LINKAGE=SNρ(1700) from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.

    4Using the GOUNARIS 68 parametrization with the complex phase of the ρ-ω interference. NODE=M009M5;LINKAGE=GS5Update of AKHMETSHIN 02. NODE=M009M5;LINKAGE=PT6Assuming m

    ρ+= m

    ρ− , Γρ+ = Γρ− . NODE=M009M0;LINKAGE=CH7From the GOUNARIS 68 parametrization of the pion form factor. NODE=M009M;LINKAGE=K8Assuming m

    ρ+= m

    ρ− = mρ0 , Γρ+ = Γρ− = Γρ0 . NODE=M009M;LINKAGE=DF9Without limitations on masses and widths. NODE=M009M;LINKAGE=WO

    10Assuming mρ0

    = mρ± , gρ0ππ = gρ±ππ . NODE=M009M;LINKAGE=HC

    11Using the data of BARKOV 85 in the hidden local symmetry model. NODE=M009M;LINKAGE=K212From the fit to e+ e− → π+π− data from the compilations of HEYN 81 and NODE=M009M;LINKAGE=G8

    BARKOV 85, including the GOUNARIS 68 parametrization of the pion form factor.13A fit of BARKOV 85 data assuming the direct ωππ coupling. NODE=M009M;LINKAGE=AB14Applying the S-matrix formalism to the BARKOV 85 data. NODE=M009M;LINKAGE=AA15 Includes BARKOV 85 data. Model-dependent width definition. NODE=M009M;LINKAGE=F16 ∣

    ∣Fπ(0)∣

    2 fixed to 1. NODE=M009M5;LINKAGE=FU17From the GOUNARIS 68 parametrization of the pion form factor. NODE=M009M5;LINKAGE=GO18The error combines statistical and systematic uncertainties. Supersedes BARATE 97M. NODE=M009M5;LINKAGE=SC19 ρ(1700) mass and width fixed at 1700 MeV and 235 MeV respectively. NODE=M009M;LINKAGE=A620From the GOUNARIS 68 parametrization of the pion form factor. The second error is a NODE=M009M;LINKAGE=K1

    model error taking into account different parametrizations of the pion form factor.21Using the data of BARATE 97M and the effective chiral Lagrangian. NODE=M009M5;LINKAGE=Z22From a fit of the model-independent parameterization of the pion form factor to the data NODE=M009M;LINKAGE=PC

    of BARATE 97M.23Assuming the equality of ρ+ and ρ− masses and widths. NODE=M009M;LINKAGE=LB24Mass errors enlarged by us to Γ/

    √N; see the note with the K∗(892) mass. NODE=M009M;LINKAGE=Z

    25Phase shift analysis. Systematic errors added corresponding to spread of different fits. NODE=M009M;LINKAGE=X26From fit of 3-parameter relativistic P-wave Breit-Wigner to total mass distribution. In- NODE=M009M;LINKAGE=A

    cludes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.

  • 4/30/2010 19:56 Page 8

    27 From the parametrization according to SOEDING 66. NODE=M009M;LINKAGE=B528From the parametrization according to ROSS 66. NODE=M009M;LINKAGE=B629HEYN 81 includes all spacelike and timelike Fπ values until 1978. NODE=M009M;LINKAGE=B30From pole extrapolation. NODE=M009M;LINKAGE=C31From phase shift analysis of GRAYER 74 data. NODE=M009M;LINKAGE=H32 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF- NODE=M009M;LINKAGE=R

    STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66,WEST 66, GOLDHABER 64, ABOLINS 63.

    33Breit-Wigner mass from a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 NODE=M009M;LINKAGE=CLdata.

    34Using relativistic Breit-Wigner and taking into account ρ-ω interference. NODE=M009M;LINKAGE=BL35Systematic errors not evaluated. NODE=M009M;LINKAGE=A136 Systematic effects not studied. NODE=M009M;LINKAGE=QQ37From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. NODE=M009M;LINKAGE=G

    CHABAUD 83 includes data of GRAYER 74.

    mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)± NODE=M009D

    NODE=M009DVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    −0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.−2.4±0.8 38 SCHAEL 05C ALEP τ− → π−π0 ντ

    0.4±0.7±0.6 1.98M 39 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    1.3±1.1±2.0 500k 39 ACHASOV 02 SND 1.02 e+ e− →π+π−π0

    1.6±0.6±1.7 600k ABELE 99E CBAR 0± 0.0 pp →π+π−π0

    −4 ±4 3000 40 REYNOLDS 69 HBC −0 2.26 π− p−5 ±5 3600 40 FOSTER 68 HBC ±0 0.0 pp

    2.4±2.1 22950 41 PISUT 68 RVUE πN → ρN38 From the combined fit of the τ− data from ANDERSON 00A and SCHAEL 05C and NODE=M009D;LINKAGE=SC

    e+ e− data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.Supersedes BARATE 97M.

    39Assuming mρ+

    = mρ− , Γρ+ = Γρ− . NODE=M009D;LINKAGE=CH

    40From quoted masses of charged and neutral modes. NODE=M009D;LINKAGE=A41 Includes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67, NODE=M009D;LINKAGE=R

    MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JA-COBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64,ABOLINS 63.

    WEIGHTED AVERAGE-0.7±0.8 (Error scaled by 1.5)

    PISUT 68 RVUE 2.2FOSTER 68 HBCREYNOLDS 69 HBC 0.7ABELE 99E CBAR 1.6ACHASOV 02 SND 0.8ALOISIO 03 KLOE 1.4SCHAEL 05C ALEP 4.6

    χ2

    11.2(Confidence Level = 0.048)

    -15 -10 -5 0 5 10 15

    mρ(770)0

    − mρ(770)± (MeV)

    mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)− NODE=M009D1

    NODE=M009D1VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •1.5±0.8±0.7 1.98M 42 ALOISIO 03 KLOE 1.02 e+ e− → π+π−π0

  • 4/30/2010 19:56 Page 9

    42Without limitations on masses and widths. NODE=M009D;LINKAGE=WO

    ρ(770) RANGE PARAMETERρ(770) RANGE PARAMETERρ(770) RANGE PARAMETERρ(770) RANGE PARAMETER NODE=M009R

    The range parameter R enters an energy-dependent correction to the NODE=M009Rwidth, of the form (1 + q2

    rR2) / (1 + q2 R2), where q is the mo-

    mentum of one of the pions in the ππ rest system. At resonance, q =

    qr .

    NODE=M009RVALUE (GeV−1) DOCUMENT ID TECN CHG COMMENT

    5.3+0.9−0.75.3+0.9−0.75.3+0.9−0.75.3+0.9−0.7 CHABAUD 83 ASPK 0 17 π

    − p polar-ized

    ρ(770) WIDTHρ(770) WIDTHρ(770) WIDTHρ(770) WIDTH NODE=M009220

    We no longer list S-wave Breit-Wigner fits, or data with high combinatorial NODE=M009220background.

    NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e− NODE=M009W0NODE=M009W0VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    146.2 ±0.7 OUR AVERAGE146.2 ±0.7 OUR AVERAGE146.2 ±0.7 OUR AVERAGE146.2 ±0.7 OUR AVERAGE Error includes scale factor of 1.1.145.98±0.75±0.50 900k 43 AKHMETSHIN 07 e+ e− → π+π−146.1 ±0.8 ±1.5 800k 44,45 ACHASOV 06 SND e+ e− → π+π−143.85±1.33±0.80 114k 46,47 AKHMETSHIN 04 CMD2 e+ e− → π+π−147.3 ±1.5 ±0.7 1.98M 48 ALOISIO 03 KLOE 1.02 e+ e− →

    π+π−π0151.1 ±2.6 ±3.0 500k 48 ACHASOV 02 SND 0 1.02 e+ e− →

    π+π−π0150.5 ±3.0 49 BARKOV 85 OLYA 0 e+ e− → π+π−• • • We do not use the following data for averages, fits, limits, etc. • • •

    OCCUR=2143.9 ±1.3 ±1.1 1.98M 50 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    OCCUR=3147.4 ±1.5 ±0.7 1.98M 51 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    OCCUR=3149.8 ±2.2 ±2.0 500k 52 ACHASOV 02 SND 1.02 e+ e− →π+π−π0

    147.9 ±1.5 ±7.5 53 BENAYOUN 98 RVUE e+ e− → π+π−,µ+µ−

    153.5 ±1.3 ±4.6 54 GARDNER 98 RVUE 0.28–0.92 e+ e− →π+π−

    145.0 ±1.7 55 O’CONNELL 97 RVUE e+ e− → π+π−142.5 ±3.5 56 BERNICHA 94 RVUE e+ e− → π+π−138 ±1 57 GESHKEN... 89 RVUE e+ e− → π+π−

    CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e− NODE=M009W5NODE=M009W5VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE148.1±0.4±1.7 5.4M 58,59 FUJIKAWA 08 BELL ± τ− → π−π0 ντ149.0±1.2 59,60 SCHAEL 05C ALEP τ− → π−π0 ντ

    OCCUR=2149.9±2.3±2.0 500k 48 ACHASOV 02 SND ± 1.02 e+ e− →π+π−π0

    150.4±1.4±1.4 87k 61,62 ANDERSON 00A CLE2 τ− → π−π0 ντ• • • We do not use the following data for averages, fits, limits, etc. • • •

    143.7±1.3±1.2 1.98M 48 ALOISIO 03 KLOE ± 1.02 e+ e− →π+π−π0

    OCCUR=2142.9±1.3±1.4 1.98M 51 ALOISIO 03 KLOE − 1.02 e+ e− →π+π−π0

    OCCUR=3144.7±1.4±1.2 1.98M 51 ALOISIO 03 KLOE + 1.02 e+ e− →π+π−π0

    150.2±2.0+0.7−1.663 SANZ-CILLERO03 RVUE τ− → π−π0 ντ

    OCCUR=4150.9±2.2±2.0 500k 52 ACHASOV 02 SND 1.02 e+ e− →π+π−π0

    MIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONS NODE=M009W7NODE=M009W7VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    149.5±1.3149.5±1.3149.5±1.3149.5±1.3 600k 64 ABELE 99E CBAR 0± 0.0 pp →π+π−π0

  • 4/30/2010 19:56 Page 10

    CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED NODE=M009W2NODE=M009W2VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

    150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE152.8± 4.3 ABELE 97 CBAR pn → π−π0π0155 ±11 2935 65 CAPRARO 87 SPEC − 200 π−Cu →

    π−π0CuOCCUR=2154 ±20 967 65 CAPRARO 87 SPEC − 200 π−Pb →

    π−π0Pb150 ± 5 HUSTON 86 SPEC + 202 π+A →

    π+π0A146 ±12 6500 66 BYERLY 73 OSPK − 5 π− p148.2± 4.1 9650 67 PISUT 68 RVUE − 1.7–3.2 π− p, t

  • 4/30/2010 19:56 Page 11

    56Applying the S-matrix formalism to the BARKOV 85 data. NODE=M009W;LINKAGE=AA57 Includes BARKOV 85 data. Model-dependent width definition. NODE=M009W;LINKAGE=F58 ∣

    ∣Fπ(0)∣

    2 fixed to 1. NODE=M009W5;LINKAGE=FU59From the GOUNARIS 68 parametrization of the pion form factor. NODE=M009W5;LINKAGE=GO60The error combines statistical and systematic uncertainties. Supersedes BARATE 97M. NODE=M009W5;LINKAGE=SC61 ρ(1700) mass and width fixed at 1700 MeV and 235 MeV respectively. NODE=M009W;LINKAGE=A662From the GOUNARIS 68 parametrization of the pion form factor. The second error is a NODE=M009W;LINKAGE=K1

    model error taking into account different parametrizations of the pion form factor.63Using the data of BARATE 97M and the effective chiral Lagrangian. NODE=M009W5;LINKAGE=Z64Assuming the equality of ρ+ and ρ− masses and widths. NODE=M009W;LINKAGE=LB65Width errors enlarged by us to 4Γ/

    √N; see the note with the K∗(892) mass. NODE=M009W;LINKAGE=Z

    66Phase shift analysis. Systematic errors added corresponding to spread of different fits. NODE=M009W;LINKAGE=X67From fit of 3-parameter relativistic P-wave Breit-Wigner to total mass distribution. In- NODE=M009W;LINKAGE=A

    cludes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.

    68 From the parametrization according to SOEDING 66. NODE=M009W;LINKAGE=B569From the parametrization according to ROSS 66. NODE=M009W;LINKAGE=B670From pole extrapolation. NODE=M009W;LINKAGE=C71From phase shift analysis of GRAYER 74 data. NODE=M009W;LINKAGE=H72Using relativistic Breit-Wigner and taking into account ρ-ω interference. NODE=M009W;LINKAGE=BL73Systematic errors not evaluated. NODE=M009W;LINKAGE=A174From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. NODE=M009W;LINKAGE=G

    CHABAUD 83 includes data of GRAYER 74.75HEYN 81 includes all spacelike and timelike Fπ values until 1978. NODE=M009W;LINKAGE=B76 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF- NODE=M009W;LINKAGE=R

    STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66,WEST 66, GOLDHABER 64, ABOLINS 63.

    Γρ(770)0 − Γρ(770)±Γρ(770)0 − Γρ(770)±Γρ(770)0 − Γρ(770)±Γρ(770)0 − Γρ(770)± NODE=M009W6NODE=M009W6VALUE EVTS DOCUMENT ID TECN COMMENT

    0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE Error includes scale factor of 1.4.−0.2±1.0 77 SCHAEL 05C ALEP τ− → π−π0 ντ

    3.6±1.8±1.7 1.98M 78 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    Γρ(770)+ − Γρ(770)−Γρ(770)+ − Γρ(770)−Γρ(770)+ − Γρ(770)−Γρ(770)+ − Γρ(770)− NODE=M009W16NODE=M009W16VALUE EVTS DOCUMENT ID TECN COMMENT

    1.8±2.0±0.51.8±2.0±0.51.8±2.0±0.51.8±2.0±0.5 1.98M 79 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    77 From the combined fit of the τ− data from ANDERSON 00A and SCHAEL 05C and NODE=M009W6;LINKAGE=SCe+ e− data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.Supersedes BARATE 97M.

    78Assuming mρ+

    = mρ− , Γρ+ = Γρ− . NODE=M009W6;LINKAGE=CH

    79Without limitations on masses and widths. NODE=M009W16;LINKAGE=WO

    ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES NODE=M009225;NODE=M009Scale factor/

    Mode Fraction (Γi /Γ) Confidence level

    DESIG=1;OUR EVAL;→ NOT CHECKED ←Γ1 ππ ∼ 100 %

    ρ(770)± decaysρ(770)± decaysρ(770)± decaysρ(770)± decays NODE=M009;CLUMP=ADESIG=11;OUR EVAL;→ NOT CHECKED ←

    Γ2 π±π0 ∼ 100 %

    DESIG=3Γ3 π±γ ( 4.5 ±0.5 )× 10−4 S=2.2

    DESIG=5Γ4 π± η < 6 × 10−3CL=84%

    DESIG=21Γ5 π±π+π−π0 < 2.0 × 10−3CL=84%

    ρ(770)0 decaysρ(770)0 decaysρ(770)0 decaysρ(770)0 decays NODE=M009;CLUMP=BDESIG=12;OUR EVAL;→ NOT CHECKED ←

    Γ6 π+π− ∼ 100 %

    DESIG=60Γ7 π+π−γ ( 9.9 ±1.6 )× 10−3

    DESIG=40Γ8 π0γ ( 6.0 ±0.8 )× 10−4

    DESIG=8Γ9 ηγ ( 3.00±0.20 )× 10−4

    DESIG=80Γ10 π0π0γ ( 4.5 ±0.8 )× 10−5

    DESIG=6Γ11 µ+µ− [a] ( 4.55±0.28 )× 10−5

    DESIG=4Γ12 e+ e− [a] ( 4.72±0.05 )× 10−5

    DESIG=7;OUR EVAL;→ NOT CHECKED ←Γ13 π+π−π0 ( 1.01+0.54−0.36±0.34)× 10

    −4

    DESIG=22Γ14 π+π−π+π− ( 1.8 ±0.9 )× 10−5

    DESIG=30Γ15 π+π−π0π0 ( 1.6 ±0.8 )× 10−5

    DESIG=9Γ16 π0 e+ e− < 1.2 × 10−5CL=90%

    DESIG=10Γ17 η e+ e−

  • 4/30/2010 19:56 Page 12

    [a] The ωρ interference is then due to ωρ mixing only, and is expected to LINKAGE=MD2be small. If eµ universality holds, Γ(ρ0 → µ+µ−) = Γ(ρ0 → e+ e−)× 0.99785.

    CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATION

    An overall fit to the total width and a partial width uses 10 mea-surements and one constraint to determine 3 parameters. The

    overall fit has a χ2 = 10.7 for 8 degrees of freedom.

    The following off-diagonal array elements are the correlation coefficients〈

    δpiδpj

    /(δpi·δpj), in percent, from the fit to parameters pi, including the branch-ing fractions, xi ≡ Γi/Γtotal. The fit constrains the xi whose labels appear in thisarray to sum to one.

    x3 −100Γ 15 −15

    x2 x3

    Mode Rate (MeV) Scale factor

    DESIG=11Γ2 π±π0 150.2 ±2.4

    DESIG=3Γ3 π±γ 0.068±0.007 2.3

    CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATION

    An overall fit to the total width, a partial width, and 7 branchingratios uses 21 measurements and one constraint to determine 9parameters. The overall fit has a χ2 = 6.0 for 13 degrees offreedom.

    The following off-diagonal array elements are the correlation coefficients〈

    δpiδpj

    /(δpi·δpj), in percent, from the fit to parameters pi, including the branch-ing fractions, xi ≡ Γi/Γtotal. The fit constrains the xi whose labels appear in thisarray to sum to one.

    x7 −100x8 −5 0x9 −1 0 1

    x10 −1 0 0 0x11 2 −3 0 0 0x12 0 0 −8 −9 0 0x14 −1 0 0 0 0 0 0

    Γ 0 0 4 5 0 0 −54 0x6 x7 x8 x9 x10 x11 x12 x14

    Mode Rate (MeV)

    DESIG=12Γ6 π+π− 147.5 ±0.9

    DESIG=60Γ7 π+π−γ 1.48 ±0.24

    DESIG=40Γ8 π0γ 0.089 ±0.012

    DESIG=8Γ9 ηγ 0.0447 ±0.0031DESIG=80Γ10 π

    0π0γ 0.0066 ±0.0012DESIG=6Γ11 µ

    +µ− [a] 0.0068 ±0.0004DESIG=4Γ12 e

    + e− [a] 0.00704±0.00006DESIG=22Γ14 π

    +π−π+π− 0.0027 ±0.0014

  • 4/30/2010 19:56 Page 13

    ρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHS NODE=M009230

    Γ(

    π±γ)

    Γ3Γ(

    π±γ)

    Γ3Γ(

    π±γ)

    Γ3Γ(

    π±γ)

    Γ3 NODE=M009W3NODE=M009W3VALUE (keV) DOCUMENT ID TECN CHG COMMENT

    68 ±7 OUR FIT68 ±7 OUR FIT68 ±7 OUR FIT68 ±7 OUR FIT Error includes scale factor of 2.3.68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE Error includes scale factor of 2.2. See the ideogram below.81 ±4 ±4 CAPRARO 87 SPEC − 200 π−A → π−π0A59.8±4.0 HUSTON 86 SPEC + 202 π+A → π+π0A71 ±7 JENSEN 83 SPEC − 156–260 π−A → π−π0A

    WEIGHTED AVERAGE68±7 (Error scaled by 2.2)

    Values above of weighted average, error,and scale factor are based upon the data inthis ideogram only. They are not neces-sarily the same as our ‘best’ values,obtained from a least-squares constrained fitutilizing measurements of other (related)quantities as additional information.

    JENSEN 83 SPEC 0.2HUSTON 86 SPEC 3.8CAPRARO 87 SPEC 5.6

    χ2

    9.6(Confidence Level = 0.0080)

    40 50 60 70 80 90 100 110

    Γ(

    π±γ)

    (keV)

    Γ(

    e+ e−)

    Γ12Γ(

    e+ e−)

    Γ12Γ(

    e+ e−)

    Γ12Γ(

    e+ e−)

    Γ12 NODE=M009W4NODE=M009W4VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

    7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.048±0.057±0.050 900k 80 AKHMETSHIN 07 e+ e− → π+π−

    OCCUR=27.06 ±0.11 ±0.05 114k 81,82 AKHMETSHIN 04 CMD2 e+ e− → π+π−6.77 ±0.10 ±0.30 BARKOV 85 OLYA e+ e− → π+π−• • • We do not use the following data for averages, fits, limits, etc. • • •

    7.12 ±0.02 ±0.11 800k 83 ACHASOV 06 SND e+ e− → π+π−6.3 ±0.1 84 BENAYOUN 98 RVUE e+ e− → π+π−,

    µ+µ−

    Γ(

    π0γ)

    Γ8Γ(

    π0γ)

    Γ8Γ(

    π0γ)

    Γ8Γ(

    π0γ)

    Γ8 NODE=M009W31NODE=M009W31VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    77±17±11 36500 85 ACHASOV 03 SND 0.60–0.97 e+ e− →π0 γ

    121±31 DOLINSKY 89 ND e+ e− → π0 γ

    Γ(

    ηγ)

    Γ9Γ(

    ηγ)

    Γ9Γ(

    ηγ)

    Γ9Γ(

    ηγ)

    Γ9 NODE=M009W32NODE=M009W32VALUE (keV) DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    62±17 86 DOLINSKY 89 ND e+ e− → ηγ

    Γ(

    π+π−π+π−)

    Γ14Γ(

    π+π−π+π−)

    Γ14Γ(

    π+π−π+π−)

    Γ14Γ(

    π+π−π+π−)

    Γ14 NODE=M009W33NODE=M009W33VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    2.8±1.4±0.5 153 AKHMETSHIN 00 CMD2 0.6–0.97 e+ e− →π+π−π+π−

  • 4/30/2010 19:56 Page 14

    80A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05. NODE=M009W4;LINKAGE=AK81Using the GOUNARIS 68 parametrization with the complex phase of the ρ-ω interference. NODE=M009W4;LINKAGE=GS82From a fit in the energy range 0.61 to 0.96 GeV. Update of AKHMETSHIN 02. NODE=M009W4;LINKAGE=P283 Supersedes ACHASOV 05A. NODE=M009W4;LINKAGE=AC84Using the data of BARKOV 85 in the hidden local symmetry model. NODE=M009W4;LINKAGE=K285Using Γtotal= 147.9 ± 1.3 MeV and B(ρ → π

    0 γ) from ACHASOV 03. NODE=M009W31;LINKAGE=AV86Solution corresponding to constructive ω-ρ interference. NODE=M009W32;LINKAGE=L

    ρ(770) Γ(e+ e−)Γ(i)/Γ2(total)ρ(770) Γ(e+ e−)Γ(i)/Γ2(total)ρ(770) Γ(e+ e−)Γ(i)/Γ2(total)ρ(770) Γ(e+ e−)Γ(i)/Γ2(total) NODE=M009233

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ12/Γ × Γ6/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ12/Γ × Γ6/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ12/Γ × Γ6/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ12/Γ × Γ6/Γ NODE=M009G4NODE=M009G4VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT

    4.876±0.023±0.0644.876±0.023±0.0644.876±0.023±0.0644.876±0.023±0.064 800k 87,88 ACHASOV 06 SND e+ e− → π+π−87 Supersedes ACHASOV 05A. NODE=M009G4;LINKAGE=AC88A fit of the SND data from 400 to 1000 MeV using parameters of the ρ(1450) and NODE=M009G4;LINKAGE=SNρ(1700) from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.

    Γ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ12/Γ × Γ9/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ12/Γ × Γ9/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ12/Γ × Γ9/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ12/Γ × Γ9/Γ NODE=M009G1NODE=M009G1VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT

    1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.32±0.14±0.08 33k 89 ACHASOV 07B SND 0.6–1.38 e+ e− → ηγ1.50±0.65±0.09 17.4k 90 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ1.61±0.20±0.11 23k 91,92 AKHMETSHIN 01B CMD2 e+ e− → ηγ1.85±0.49 93 DOLINSKY 89 ND e+ e− → ηγ89 From a combined fit of σ(e+ e− → ηγ) with η → 3π0 and η → π+π−π0, and NODE=M009G1;LINKAGE=AH

    fixing B(η → 3π0) / B(η → π+π−π0) = 1.44 ± 0.04. Recalculated by us from thecross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.

    90 From the η → 2γ decay and using B(η → γ γ)= 39.43 ± 0.26%. NODE=M009G;LINKAGE=AH91From the η → 3π0 decay and using B(η → 3π0)= (32.24 ± 0.29)× 10−2. NODE=M009G;LINKAGE=AK92The combined fit from 600 to 1380 MeV taking into account ρ(770), ω(782), φ(1020), NODE=M009G;LINKAGE=BQ

    and ρ(1450) (mass and width fixed at 1450 MeV and 310 MeV respectively).93Recalculated by us from the cross section in the peak. NODE=M009G;LINKAGE=LP

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ12/Γ × Γ8/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ12/Γ × Γ8/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ12/Γ × Γ8/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ12/Γ × Γ8/Γ NODE=M009G2NODE=M009G2VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT

    2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE

    2.90+0.60−0.55±0.18 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →

    π0 γ2.37±0.53±0.33 36500 94 ACHASOV 03 SND 0.60–0.97 e+ e− →

    π0 γ3.61±0.74±0.49 10625 95 DOLINSKY 89 ND e+ e− → π0 γ94Using σ

    φ →π0 γ from ACHASOV 00 and mρ= 775.97 MeV in the model with the NODE=M009G;LINKAGE=SHenergy-independent phase of ρ-ω interference equal to (−10.2 ± 7.0)◦.

    95Recalculated by us from the cross section in the peak. NODE=M009G2;LINKAGE=LP

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ12/Γ × Γ13/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ12/Γ × Γ13/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ12/Γ × Γ13/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ12/Γ × Γ13/Γ NODE=M009G3NODE=M009G3VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    4.58+2.46−1.64±1.56 1.2M96 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π096 Statistical significance in less than 3 σ. NODE=M009G3;LINKAGE=AC

    ρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOS NODE=M009235

    Γ(

    π± η)

    /Γ(

    ππ)

    Γ4/Γ1Γ(

    π± η)

    /Γ(

    ππ)

    Γ4/Γ1Γ(

    π± η)

    /Γ(

    ππ)

    Γ4/Γ1Γ(

    π± η)

    /Γ(

    ππ)

    Γ4/Γ1 NODE=M009R4NODE=M009R4VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT

  • 4/30/2010 19:56 Page 15

    Γ(

    µ+µ−)

    /Γ(

    π+π−)

    Γ11/Γ6Γ(

    µ+µ−)

    /Γ(

    π+π−)

    Γ11/Γ6Γ(

    µ+µ−)

    /Γ(

    π+π−)

    Γ11/Γ6Γ(

    µ+µ−)

    /Γ(

    π+π−)

    Γ11/Γ6 NODE=M009R5NODE=M009R5VALUE (units 10−5) DOCUMENT ID TECN COMMENT

    4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.6 ±0.2 ±0.24.6 ±0.2 ±0.24.6 ±0.2 ±0.24.6 ±0.2 ±0.2 ANTIPOV 89 SIGM π−Cu →

    µ+µ−π−Cu• • • We do not use the following data for averages, fits, limits, etc. • • •

    8.2 +1.6−3.697 ROTHWELL 69 CNTR Photoproduction

    5.6 ±1.5 98 WEHMANN 69 OSPK 12 π−C, Fe

    9.7 +3.1−3.399 HYAMS 67 OSPK 11 π−Li, H

    Γ(

    e+ e−)

    /Γ(

    ππ)

    Γ12/Γ1Γ(

    e+ e−)

    /Γ(

    ππ)

    Γ12/Γ1Γ(

    e+ e−)

    /Γ(

    ππ)

    Γ12/Γ1Γ(

    e+ e−)

    /Γ(

    ππ)

    Γ12/Γ1 NODE=M009R3NODE=M009R3VALUE (units 10−4) DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •0.40±0.05 100 BENAKSAS 72 OSPK e+ e− → π+π−

    Γ(

    ηγ)

    /Γtotal Γ9/ΓΓ(

    ηγ)

    /Γtotal Γ9/ΓΓ(

    ηγ)

    /Γtotal Γ9/ΓΓ(

    ηγ)

    /Γtotal Γ9/Γ NODE=M009R7NODE=M009R7VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG COMMENT

    3.00±0.21 OUR FIT3.00±0.21 OUR FIT3.00±0.21 OUR FIT3.00±0.21 OUR FIT2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.79±0.34±0.03 33k 101 ACHASOV 07B SND 0.6–1.38 e+ e− → ηγ3.6 ±0.9 102 ANDREWS 77 CNTR 0 6.7–10 γCu• • • We do not use the following data for averages, fits, limits, etc. • • •3.21±1.39±0.20 17.4k103,104 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ3.39±0.42±0.23 102,105,106 AKHMETSHIN 01B CMD2 e+ e− → ηγ

    1.9 +0.6−0.8107 BENAYOUN 96 RVUE 0.54-1.04 e+ e− → ηγ

    4.0 ±1.1 102,104 DOLINSKY 89 ND e+ e− → ηγ

    Γ(

    π+π−π+π−)

    /Γtotal Γ14/ΓΓ(

    π+π−π+π−)

    /Γtotal Γ14/ΓΓ(

    π+π−π+π−)

    /Γtotal Γ14/ΓΓ(

    π+π−π+π−)

    /Γtotal Γ14/Γ NODE=M009R13NODE=M009R13VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT

    1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9±0.31.8±0.9±0.31.8±0.9±0.31.8±0.9±0.3 153 AKHMETSHIN 00 CMD2 0.6–0.97 e+ e− →

    π+π−π+π−• • • We do not use the following data for averages, fits, limits, etc. • • •

  • 4/30/2010 19:56 Page 16

    Γ(

    π+π−γ)

    /Γtotal Γ7/ΓΓ(

    π+π−γ)

    /Γtotal Γ7/ΓΓ(

    π+π−γ)

    /Γtotal Γ7/ΓΓ(

    π+π−γ)

    /Γtotal Γ7/Γ NODE=M009R12NODE=M009R12VALUE CL% DOCUMENT ID TECN COMMENT

    0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.00160.0099±0.00160.0099±0.00160.0099±0.0016 111 DOLINSKY 91 ND e+ e− → π+π− γ

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    0.0111±0.0014 112 VASSERMAN 88 ND e+ e− → π+π− γOCCUR=2

  • 4/30/2010 19:56 Page 17

    112Superseded by DOLINSKY 91. NODE=M009R12;LINKAGE=I113Structure radiation due to quark rearrangement in the decay. NODE=M009R12;LINKAGE=N114Using B(ρ → e+ e−) = (4.67 ± 0.09)× 10−5. NODE=M009R9;LINKAGE=AK115Not independent of the corresponding Γ(e+ e−)× Γ(π0 γ)/Γ2

    total.

    NODE=M009R9;LINKAGE=BZ116Using B(ρ → e+ e−) = (4.54 ± 0.10)× 10−5. NODE=M009R9;LINKAGE=AS117Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account NODE=M009R9;LINKAGE=A

    a triangle anomaly contribution.118This branching ratio includes the conventional VMD mechanism ρ → ωπ0, ω → π0 γ, NODE=M009R14;LINKAGE=AH

    and the new decay mode ρ → f0(600)γ, f0(600) → π0π0 with a branching ratio

    (2.0+1.1−0.9 ± 0.3)× 10−5 differing from zero by 2.0 standard deviations.

    119This branching ratio includes the conventional VMD mechanism ρ → ωπ0, ω → π0 γ NODE=M009R;LINKAGE=FFand the new decay mode ρ → f0(600)γ, f0(600) → π

    0π0 with a branching ratio

    (1.9+0.9−0.8 ± 0.4) × 10−5 differing from zero by 2.4 standard deviations. Supersedes

    ACHASOV 00G.120 Superseded by ACHASOV 02F. NODE=M009R;LINKAGE=GF

    ρ(770) REFERENCESρ(770) REFERENCESρ(770) REFERENCESρ(770) REFERENCES NODE=M009

    REFID=53101ACHASOV 09A JETP 109 379 M.N. Achasov et al. (SND Collab.)Translated from ZETF 136 442.

    REFID=52258ACHASOV 08 JETP 107 61 M.N. Achasov et al. (SND Collab.)Translated from ZETF 134 80.

    REFID=52536FUJIKAWA 08 PR D78 072006 M. Fujikawa et al. (BELLE Collab.)REFID=51942ACHASOV 07B PR D76 077101 M.N. Achasov et al. (SND Collab.)REFID=51615AKHMETSHIN 07 PL B648 28 R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=51113ACHASOV 06 JETP 103 380 M.N. Achasov et al. (Novosibirsk SND Collab.)

    Translated from ZETF 130 437.REFID=51133ACHASOV 06A PR D74 014016 M.N. Achasov et al. (SND Collab.)REFID=51513AULCHENKO 06 JETPL 84 413 V.M. Aulchenko et al. (Novosibirsk CMD-2 Collab.)

    Translated from ZETFP 84 491.REFID=51045ACHASOV 05A JETP 101 1053 M.N. Achasov et al. (Novosibirsk SND Collab.)

    Translated from ZETF 128 1201.REFID=50330AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=50508AKHMETSHIN 05A PL B613 29 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=51112ALOISIO 05 PL B606 12 A. Aloisio et al. (KLOE Collab.)REFID=51060AULCHENKO 05 JETPL 82 743 V.M. Aulchenko et al. (Novosibirsk CMD-2 Collab.)

    Translated from ZETFP 82 841.REFID=50845SCHAEL 05C PRPL 421 191 S. Schael et al. (ALEPH Collab.)REFID=49609AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=49610AKHMETSHIN 04B PL B580 119 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=49187ACHASOV 03 PL B559 171 M.N. Achasov et al. (Novosibirsk SND Collab.)REFID=49577ACHASOV 03D PR D68 052006 M.N. Achasov et al. (Novosibirsk SND Collab.)REFID=49404ALOISIO 03 PL B561 55 A. Aloisio et al. (KLOE Collab.)REFID=49399SANZ-CILLERO 03 EPJ C27 587 J.J. Sanz-Cillero, A. PichREFID=48549ACHASOV 02 PR D65 032002 M.N. Achasov et al. (Novosibirsk SND Collab.)REFID=48816ACHASOV 02F PL B537 201 M.N. Achasov et al. (Novosibirsk SND Collab.)REFID=48565AKHMETSHIN 02 PL B527 161 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=48167AKHMETSHIN 01B PL B509 217 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=49180COLANGELO 01 NP B603 125 G. Colangelo, J. Gasser, H. LeytwylerREFID=48313PICH 01 PR D63 093005 A. Pich, J. PortolesREFID=47417ACHASOV 00 EPJ C12 25 M.N. Achasov et al. (Novosibirsk SND Collab.)REFID=47882ACHASOV 00D JETPL 72 282 M.N. Achasov et al. (Novosibirsk SND Collab.)

    Translated from ZETFP 72 411.REFID=47929ACHASOV 00G JETPL 71 355 M.N. Achasov et al. (Novosibirsk SND Collab.)

    Translated from ZETFP 71 519.REFID=47421AKHMETSHIN 00 PL B475 190 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)REFID=47468ANDERSON 00A PR D61 112002 S. Anderson et al. (CLEO Collab.)REFID=47414ABELE 99E PL B469 270 A. Abele et al. (Crystal Barrel Collab.)REFID=45859BENAYOUN 98 EPJ C2 269 M. Benayoun et al. (IPNP, NOVO, ADLD+)REFID=46354BREITWEG 98B EPJ C2 247 J. Breitweg et al. (ZEUS Collab.)REFID=46366GARDNER 98 PR D57 2716 S. Gardner, H.B. O’ConnellREFID=47981Also PR D62 019903 (erratum)S. Gardner, H.B. O’ConnellREFID=45415ABELE 97 PL B391 191 A. Abele et al. (Crystal Barrel Collab.)REFID=45533ADAMS 97 ZPHY C74 237 M.R. Adams et al. (E665 Collab.)REFID=45622BARATE 97M ZPHY C76 15 R. Barate et al. (ALEPH Collab.)REFID=45701BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)REFID=45393BOGOLYUB... 97 PAN 60 46 M.Y. Bogolyubsky et al. (MOSU, SERP)

    Translated from YAF 60 53.REFID=45860O’CONNELL 97 NP A623 559 H.B. O’Connell et al. (ADLD)REFID=45753BENAYOUN 96 ZPHY C72 221 M. Benayoun et al. (IPNP, NOVO)REFID=44097BERNICHA 94 PR D50 4454 A. Bernicha, G. Lopez Castro, J. Pestieau (LOUV+)REFID=43585WEIDENAUER 93 ZPHY C59 387 P. Weidenauer et al. (ASTERIX Collab.)REFID=41637AGUILAR-... 91 ZPHY C50 405 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)REFID=41369DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)REFID=40739ANTIPOV 89 ZPHY C42 185 Y.M. Antipov et al. (SERP, JINR, BGNA+)REFID=40740BISELLO 89 PL B220 321 D. Bisello et al. (DM2 Collab.)REFID=41003DOLINSKY 89 ZPHY C42 511 S.I. Dolinsky et al. (NOVO)REFID=44082DUBNICKA 89 JPG 15 1349 S. Dubnicka et al. (JINR, SLOV)REFID=41017GESHKEN... 89 ZPHY C45 351 B.V. Geshkenbein (ITEP)REFID=41121KURDADZE 88 JETPL 47 512 L.M. Kurdadze et al. (NOVO)

    Translated from ZETFP 47 432.REFID=41019VASSERMAN 88 SJNP 47 1035 I.B. Vasserman et al. (NOVO)

    Translated from YAF 47 1635.REFID=41020VASSERMAN 88B SJNP 48 480 I.B. Vasserman et al. (NOVO)

    Translated from YAF 48 753.REFID=41370AULCHENKO 87C IYF 87-90 Preprint V.M. Aulchenko et al. (NOVO)REFID=40003CAPRARO 87 NP B288 659 L. Capraro et al. (CLER, FRAS, MILA+)REFID=22102BRAMON 86 PL B173 97 A. Bramon, J. Casulleras (BARC)REFID=20137HUSTON 86 PR D33 3199 J. Huston et al. (ROCH, FNAL, MINN)REFID=40287KURDADZE 86 JETPL 43 643 L.M. Kurdadze et al. (NOVO)

    Translated from ZETFP 43 497.

  • 4/30/2010 19:56 Page 18

    REFID=20134BARKOV 85 NP B256 365 L.M. Barkov et al. (NOVO)REFID=20561DRUZHININ 84 PL 144B 136 V.P. Druzhinin et al. (NOVO)REFID=20131CHABAUD 83 NP B223 1 V. Chabaud et al. (CERN, CRAC, MPIM)REFID=20132JENSEN 83 PR D27 26 T. Jensen et al. (ROCH, FNAL, MINN)REFID=20129HEYN 81 ZPHY C7 169 M.F. Heyn, C.B. Lang (GRAZ)REFID=20128BOHACIK 80 PR D21 1342 J. Bohacik, H. Kuhnelt (SLOV, WIEN)REFID=20126LANG 79 PR D19 956 C.B. Lang, A. Mas-Parareda (GRAZ)REFID=20122BARTALUCCI 78 NC 44A 587 S. Bartalucci et al. (DESY, FRAS)REFID=20124WICKLUND 78 PR D17 1197 A.B. Wicklund et al. (ANL)REFID=20120ANDREWS 77 PRL 38 198 D.E. Andrews et al. (ROCH)REFID=20119DEUTSCH... 76 NP B103 426 M. Deutschmann et al. (AACH3, BERL, BONN+)REFID=20110ENGLER 74 PR D10 2070 A. Engler et al. (CMU, CASE)REFID=20111ESTABROOKS 74 NP B79 301 P.G. Estabrooks, A.D. Martin (DURH)REFID=20113GRAYER 74 NP B75 189 G. Grayer et al. (CERN, MPIM)REFID=20104BYERLY 73 PR D7 637 W.L. Byerly et al. (MICH)REFID=20106GLADDING 73 PR D8 3721 G.E. Gladding et al. (HARV)REFID=20107HYAMS 73 NP B64 134 B.D. Hyams et al. (CERN, MPIM)REFID=20108PROTOPOP... 73 PR D7 1279 S.D. Protopopescu et al. (LBL)REFID=20094BALLAM 72 PR D5 545 J. Ballam et al. (SLAC, LBL, TUFTS)REFID=20096BENAKSAS 72 PL 39B 289 D. Benaksas et al. (ORSAY)REFID=20101JACOBS 72 PR D6 1291 L.D. Jacobs (SACL)REFID=20102RATCLIFF 72 PL 38B 345 B.N. Ratcliff et al. (SLAC)REFID=20090ABRAMS 71 PR D4 653 G.S. Abrams et al. (LBL)REFID=20085ALVENSLEB... 70 PRL 24 786 H. Alvensleben et al. (DESY)REFID=20087BIGGS 70 PRL 24 1197 P.J. Biggs et al. (DARE)REFID=20074ERBE 69 PR 188 2060 R. Erbe et al. (German Bubble Chamber Collab.)REFID=20077MALAMUD 69 Argonne Conf. 93 E.I. Malamud, P.E. Schlein (UCLA)REFID=20080REYNOLDS 69 PR 184 1424 B.G. Reynolds et al. (FSU)REFID=20082ROTHWELL 69 PRL 23 1521 P.L. Rothwell et al. (NEAS)REFID=20084WEHMANN 69 PR 178 2095 A.A. Wehmann et al. (HARV, CASE, SLAC+)REFID=20054ARMENISE 68 NC 54A 999 N. Armenise et al. (BARI, BGNA, FIRZ+)REFID=20056BATON 68 PR 176 1574 J.P. Baton, G. Laurens (SACL)REFID=20059CHUNG 68 PR 165 1491 S.U. Chung et al. (LRL)REFID=20061FOSTER 68 NP B6 107 M. Foster et al. (CERN, CDEF)REFID=48054GOUNARIS 68 PRL 21 244 G.J. Gounaris, J.J. SakuraiREFID=20062HUSON 68 PL 28B 208 R. Huson et al. (ORSAY, MILA, UCLA)REFID=20063HYAMS 68 NP B7 1 B.D. Hyams et al. (CERN, MPIM)REFID=20068LANZEROTTI 68 PR 166 1365 L.J. Lanzerotti et al. (HARV)REFID=20070PISUT 68 NP B6 325 J. Pisut, M. Roos (CERN)REFID=20038ASBURY 67B PRL 19 865 J.G. Asbury et al. (DESY, COLU)REFID=20039BACON 67 PR 157 1263 T.C. Bacon et al. (BNL)REFID=20046EISNER 67 PR 164 1699 R.L. Eisner et al. (PURD)REFID=20049HUWE 67 PL 24B 252 D.O. Huwe et al. (COLU)REFID=20050HYAMS 67 PL 24B 634 B.D. Hyams et al. (CERN, MPIM)REFID=20051MILLER 67B PR 153 1423 D.H. Miller et al. (PURD)REFID=10762ALFF-... 66 PR 145 1072 C. Alff-Steinberger et al. (COLU, RUTG)REFID=20028FERBEL 66 PL 21 111 T. Ferbel (ROCH)REFID=20030HAGOPIAN 66 PR 145 1128 V. Hagopian et al. (PENN, SACL)REFID=20031HAGOPIAN 66B PR 152 1183 V. Hagopian, Y.L. Pan (PENN, LRL)REFID=20033JACOBS 66B UCRL 16877 L.D. Jacobs (LRL)REFID=10770JAMES 66 PR 142 896 F.E. James, H.L. Kraybill (YALE, BNL)REFID=46380ROSS 66 PR 149 1172 M. Ross, L. StodolskyREFID=46385SOEDING 66 PL B19 702 P. SoedingREFID=20035WEST 66 PR 149 1089 E. West et al. (WISC)REFID=20016;ERROR=1BLIEDEN 65 PL 19 444 H.R. Blieden et al.REFID=20578CARMONY 64 PRL 12 254 D.D. Carmony et al. (UCB)REFID=20013GOLDHABER 64 PRL 12 336 G. Goldhaber et al. (LRL, UCB)REFID=20006ABOLINS 63 PRL 11 381 M.A. Abolins et al. (UCSD)

  • 4/30/2010 19:56 Page 19

    NODE=M001

    ω(782) IG (JPC ) = 0−(1 −−)

    ω(782) MASSω(782) MASSω(782) MASSω(782) MASS NODE=M001M

    NODE=M001MVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

    782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below.783.20±0.13±0.16 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →

    π0 γ782.68±0.09±0.04 11200 1 AKHMETSHIN 04 CMD2 e+ e− → π+π−π0782.79±0.08±0.09 1.2M 2 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π0782.7 ±0.1 ±1.5 19500 WURZINGER 95 SPEC 1.33 pd → 3Heω781.96±0.17±0.80 11k 3 AMSLER 94C CBAR 0.0 pp → ωηπ0

    OCCUR=2782.08±0.36±0.82 3463 4 AMSLER 94C CBAR 0.0 pp → ωηπ0781.96±0.13±0.17 15k AMSLER 93B CBAR 0.0 pp → ωπ0π0782.4 ±0.2 270k WEIDENAUER 93 ASTE pp → 2π+2π−π0782.2 ±0.4 1488 KURDADZE 83B OLYA e+ e− → π+π−π0782.4 ±0.5 7000 5 KEYNE 76 CNTR π− p → ωn• • • We do not use the following data for averages, fits, limits, etc. • • •

    781.78±0.10 6 BARKOV 87 CMD e+ e− → π+π−π0783.3 ±0.4 433 CORDIER 80 DM1 e+ e− → π+π−π0782.5 ±0.8 33260 ROOS 80 RVUE 0.0–3.6 pp782.6 ±0.8 3000 BENKHEIRI 79 OMEG 9–12 π± p781.8 ±0.6 1430 COOPER 78B HBC 0.7–0.8 pp → 5π782.7 ±0.9 535 VANAPEL... 78 HBC 7.2 pp → ppω783.5 ±0.8 2100 GESSAROLI 77 HBC 11 π− p → ωn782.5 ±0.8 418 AGUILAR-... 72B HBC 3.9,4.6 K− p783.4 ±1.0 248 BIZZARRI 71 HBC 0.0 pp → K+K−ω

    OCCUR=2781.0 ±0.6 510 BIZZARRI 71 HBC 0.0 pp → K1K1ωOCCUR=2783.7 ±1.0 3583 7 COYNE 71 HBC 3.7 π+ p →

    pπ+π+π−π0784.1 ±1.2 750 ABRAMOVI... 70 HBC 3.9 π− p783.2 ±1.6 8 BIGGS 70B CNTR

  • 4/30/2010 19:56 Page 20

    WEIGHTED AVERAGE782.65±0.12 (Error scaled by 1.9)

    KEYNE 76 CNTR 0.2KURDADZE 83B OLYA 1.2WEIDENAUER 93 ASTE 1.5AMSLER 93B CBAR 10.3AMSLER 94C CBARAMSLER 94C CBARWURZINGER 95 SPECACHASOV 03D RVUE 1.4AKHMETSHIN 04 CMD2 0.1AKHMETSHIN 05 CMD2 7.2

    χ2

    22.0(Confidence Level = 0.0012)

    781 782 783 784 785

    ω(782) mass (MeV)

    ω(782) WIDTHω(782) WIDTHω(782) WIDTHω(782) WIDTH NODE=M001W

    NODE=M001WVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

    8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.68±0.23±0.10 11200 9 AKHMETSHIN 04 CMD2 e+ e− → π+π−π08.68±0.04±0.15 1.2M 10 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π08.2 ±0.3 19500 WURZINGER 95 SPEC 1.33 pd → 3Heω8.4 ±0.1 11 AULCHENKO 87 ND e+ e− → π+π−π08.30±0.40 BARKOV 87 CMD e+ e− → π+π−π09.8 ±0.9 1488 KURDADZE 83B OLYA e+ e− → π+π−π09.0 ±0.8 433 CORDIER 80 DM1 e+ e− → π+π−π09.1 ±0.8 451 BENAKSAS 72B OSPK e+ e− → π+π−π0• • • We do not use the following data for averages, fits, limits, etc. • • •12 ±2 1430 COOPER 78B HBC 0.7–0.8 pp → 5π9.4 ±2.5 2100 GESSAROLI 77 HBC 11 π− p → ωn

    10.22±0.43 20000 12 KEYNE 76 CNTR π− p → ωn13.3 ±2 418 AGUILAR-... 72B HBC 3.9,4.6 K− p10.5 ±1.5 BORENSTEIN 72 HBC 2.18 K− p7.70±0.9 ±1.15 940 BROWN 72 MMS 2.5 π− p → nMM

    10.3 ±1.4 510 BIZZARRI 71 HBC 0.0 pp → K1K1ωOCCUR=212.8 ±3.0 248 BIZZARRI 71 HBC 0.0 pp → K+K−ω

    9.5 ±1.0 3583 COYNE 71 HBC 3.7 π+ p →pπ+π+π−π0

    9Update of AKHMETSHIN 00C. NODE=M001W;LINKAGE=PT10From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and NODE=M001W;LINKAGE=VH

    ACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− final states.Supersedes ACHASOV 99E and ACHASOV 02E.

    11Relativistic Breit-Wigner includes radiative corrections. NODE=M001W;LINKAGE=D12Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM. NODE=M001W;LINKAGE=B

    ω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODES NODE=M001215;NODE=M001Scale factor/

    Mode Fraction (Γi /Γ) Confidence level

    DESIG=1Γ1 π+π−π0 (89.2 ±0.7 ) %

    DESIG=3Γ2 π0γ ( 8.28±0.28) % S=2.1

    DESIG=2Γ3 π+π− ( 1.53+0.11−0.13) % S=1.2

    DESIG=13Γ4 neutrals (excludingπ0γ ) ( 8 +8−5 )× 10

    −3 S=1.1

    DESIG=6Γ5 ηγ ( 4.6 ±0.4 )× 10−4 S=1.1DESIG=14Γ6 π

    0 e+ e− ( 7.7 ±0.6 )× 10−4

    DESIG=11Γ7 π0µ+µ− ( 1.3 ±0.4 )× 10−4 S=2.1

  • 4/30/2010 19:56 Page 21

    DESIG=18Γ8 η e+ e−

    DESIG=7Γ9 e+ e− ( 7.28±0.14)× 10−5 S=1.3

    DESIG=12Γ10 π+π−π0π0 < 2 × 10−4 CL=90%

    DESIG=4Γ11 π+π−γ < 3.6 × 10−3 CL=95%

    DESIG=15Γ12 π+π−π+π− < 1 × 10−3 CL=90%

    DESIG=5Γ13 π0π0γ ( 6.6 ±1.1 )× 10−5

    DESIG=17Γ14 ηπ0γ < 3.3 × 10−5 CL=90%

    DESIG=8Γ15 µ+µ− ( 9.0 ±3.1 )× 10−5

    DESIG=10Γ16 3γ < 1.9 × 10−4 CL=95%

    Charge conjugation (C ) violating modesCharge conjugation (C ) violating modesCharge conjugation (C ) violating modesCharge conjugation (C ) violating modes NODE=M001;CLUMP=ADESIG=9Γ17 ηπ

    0 C < 2.1 × 10−4 CL=90%DESIG=193Γ18 2π

    0 C < 2.1 × 10−4 CL=90%DESIG=16Γ19 3π

    0 C < 2.3 × 10−4 CL=90%

    CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATION

    An overall fit to 15 branching ratios uses 51 measurements andone constraint to determine 10 parameters. The overall fit has a

    χ2 = 51.8 for 42 degrees of freedom.

    The following off-diagonal array elements are the correlation coefficients〈

    δxiδxj

    /(δxi·δxj), in percent, from the fit to the branching fractions, xi ≡Γi/Γtotal. The fit constrains the xi whose labels appear in this array to sum to

    one.

    x2 22

    x3 −18 −4x4 −92 −56 1x5 7 7 −1 −9x6 −1 0 0 0 0x7 −1 0 0 0 0 0x9 −38 −33 7 44 −21 0 0

    x13 1 4 0 −2 0 0 0 −1x15 0 0 0 0 0 0 0 0 0

    x1 x2 x3 x4 x5 x6 x7 x9 x13

    ω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHS NODE=M001218

    Γ(

    π0γ)

    Γ2Γ(

    π0γ)

    Γ2Γ(

    π0γ)

    Γ2Γ(

    π0γ)

    Γ2 NODE=M001W1NODE=M001W1VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •788±12±27 36500 13 ACHASOV 03 SND 0.60–0.97 e+ e− → π0 γ764±51 10625 DOLINSKY 89 ND e+ e− → π0 γ13Using Γω = 8.44 ± 0.09 MeV and B(ω → π

    0 γ) from ACHASOV 03. NODE=M001W1;LINKAGE=AD

    Γ(

    ηγ)

    Γ5Γ(

    ηγ)

    Γ5Γ(

    ηγ)

    Γ5Γ(

    ηγ)

    Γ5 NODE=M001W2NODE=M001W2VALUE (keV) DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •6.1±2.5 14 DOLINSKY 89 ND e+ e− → ηγ14Using Γω = 8.4 ± 0.1 MeV and B(ω → ηγ) from DOLINSKY 89. NODE=M001W2;LINKAGE=DA

    Γ(

    e+ e−)

    Γ9Γ(

    e+ e−)

    Γ9Γ(

    e+ e−)

    Γ9Γ(

    e+ e−)

    Γ9 NODE=M001W7NODE=M001W7VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

    0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION → NOT CHECKED ←• • • We do not use the following data for averages, fits, limits, etc. • • •0.591±0.015 11200 15,16 AKHMETSHIN 04 CMD2 e+ e− → π+π−π00.653±0.003±0.021 1.2M 17 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π00.600±0.031 10625 DOLINSKY 89 ND e+ e− → π0 γ15Using B(ω → π+π−π0) = 0.891 ± 0.007 and Γtotal = 8.44 ± 0.09 MeV. NODE=M001W7;LINKAGE=3P16Update of AKHMETSHIN 00C. NODE=M001W7;LINKAGE=PT17Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%. NODE=M001W;LINKAGE=VF

  • 4/30/2010 19:56 Page 22

    ω(782) Γ(e+ e−)Γ(i)/Γ2(total)ω(782) Γ(e+ e−)Γ(i)/Γ2(total)ω(782) Γ(e+ e−)Γ(i)/Γ2(total)ω(782) Γ(e+ e−)Γ(i)/Γ2(total) NODE=M001225

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ9/Γ × Γ1/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ9/Γ × Γ1/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ9/Γ × Γ1/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−π0)

    /Γtotal Γ9/Γ × Γ1/Γ NODE=M001G2NODE=M001G2VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT

    6.49±0.11 OUR FIT6.49±0.11 OUR FIT6.49±0.11 OUR FIT6.49±0.11 OUR FIT Error includes scale factor of 1.3.6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE Error includes scale factor of 1.1.6.24±0.11±0.08 11.2k 18 AKHMETSHIN 04 CMD2 e+ e− → π+π−π06.70±0.06±0.27 AUBERT,B 04N BABR 10.6 e+ e− →

    π+π−π0 γ6.74±0.04±0.24 1.2M 19,20 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π06.37±0.35 19 DOLINSKY 89 ND e+ e− → π+π−π06.45±0.24 19 BARKOV 87 CMD e+ e− → π+π−π05.79±0.42 1488 19 KURDADZE 83B OLYA e+ e− → π+π−π05.89±0.54 433 19 CORDIER 80 DM1 e+ e− → π+π−π07.54±0.84 451 19 BENAKSAS 72B OSPK e+ e− → π+π−π018Update of AKHMETSHIN 00C. NODE=M001G;LINKAGE=PT19Recalculated by us from the cross section in the peak. NODE=M001G;LINKAGE=LP20From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and NODE=M001G;LINKAGE=VH

    ACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− final states.Supersedes ACHASOV 99E and ACHASOV 02E.

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ9/Γ × Γ2/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ9/Γ × Γ2/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ9/Γ × Γ2/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π0γ)

    /Γtotal Γ9/Γ × Γ2/Γ NODE=M001G4NODE=M001G4VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

    6.02±0.20 OUR FIT6.02±0.20 OUR FIT6.02±0.20 OUR FIT6.02±0.20 OUR FIT Error includes scale factor of 1.9.6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.47±0.14±0.39 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ6.50±0.11±0.20 36500 21 ACHASOV 03 SND 0.60–0.97 e+ e− →

    π0 γ6.34±0.21±0.21 10625 22 DOLINSKY 89 ND e+ e− → π0 γ21Using σ

    φ →π0 γ from ACHASOV 00 and mω= 782.57 MeV in the model with the NODE=M001G;LINKAGE=SHenergy-independent phase of ρ-ω interference equal to (−10.2 ± 7.0)◦.

    22Recalculated by us from the cross section in the peak. NODE=M001G4;LINKAGE=LP

    Γ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ9/Γ × Γ3/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ9/Γ × Γ3/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ9/Γ × Γ3/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    π+π−)

    /Γtotal Γ9/Γ × Γ3/Γ NODE=M001G5NODE=M001G5VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

    1.225±0.058±0.0411.225±0.058±0.0411.225±0.058±0.0411.225±0.058±0.041 800k 23 ACHASOV 06 SND e+ e− → π+π−23 Supersedes ACHASOV 05A. NODE=M001G5;LINKAGE=AC

    Γ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ9/Γ × Γ5/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ9/Γ × Γ5/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ9/Γ × Γ5/ΓΓ(

    e+ e−)

    /Γtotal × Γ(

    ηγ)

    /Γtotal Γ9/Γ × Γ5/Γ NODE=M001G3NODE=M001G3VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT

    3.32±0.28 OUR FIT3.32±0.28 OUR FIT3.32±0.28 OUR FIT3.32±0.28 OUR FIT Error includes scale factor of 1.1.3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.10±0.31±0.11 33k 24 ACHASOV 07B SND 0.6–1.38 e+ e− → ηγ

    3.17+1.85−1.31±0.21 17.4k25 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ

    3.41±0.52±0.21 23k 26,27 AKHMETSHIN 01B CMD2 e+ e− → ηγ24 From a combined fit of σ(e+ e− → ηγ) with η → 3π0 and η → π+π−π0, and NODE=M001G3;LINKAGE=AH

    fixing B(η → 3π0) / B(η → π+π−π0) = 1.44 ± 0.04. Recalculated by us from thecross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.

    25 From the η → 2γ decay and using B(η → γ γ)= 39.43 ± 0.26%. NODE=M001G;LINKAGE=AH26From the η → 3π0 decay and using B(η → 3π0)= (32.24 ± 0.29)× 10−2. NODE=M001G;LINKAGE=AK27The combined fit from 600 to 1380 MeV taking into account ρ(770), ω(782), φ(1020), NODE=M001G;LINKAGE=BQ

    and ρ(1450) (mass and width fixed at 1450 MeV and 310 MeV respectively).

    ω(782) BRANCHING RATIOSω(782) BRANCHING RATIOSω(782) BRANCHING RATIOSω(782) BRANCHING RATIOS NODE=M001220

    Γ(

    π+π−π0)

    /Γtotal Γ1/ΓΓ(

    π+π−π0)

    /Γtotal Γ1/ΓΓ(

    π+π−π0)

    /Γtotal Γ1/ΓΓ(

    π+π−π0)

    /Γtotal Γ1/Γ NODE=M001R21NODE=M001R21VALUE EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    0.9024±0.0019 28 AMBROSINO 08G KLOE 1.0–1.03 e+ e− →π+π− 2π0, 2π0 γ

    0.8965±0.0016±0.0048 1.2M 29,30 ACHASOV 03D RVUE 0.44–2.00 e+ e− →π+π−π0

    0.880 ±0.020 ±0.032 11200 30,31 AKHMETSHIN 00C CMD2 e+ e− → π+π−π00.8942±0.0062 30 DOLINSKY 89 ND e+ e− → π+π−π0

  • 4/30/2010 19:56 Page 23

    28Not independent of Γ(π0 γ) / Γ(π+π−π0) from AMBROSINO 08G. NODE=M001R21;LINKAGE=AM29Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%. NODE=M001R;LINKAGE=VF30Not independent of the corresponding Γ(e+ e−)× Γ(π+π−π0)/Γ2

    total.

    NODE=M001R;LINKAGE=ZL31Using Γ(e+ e−)=0.60 ± 0.02 keV. NODE=M001R;LINKAGE=KH

    Γ(

    π0γ)

    /Γtotal Γ2/ΓΓ(

    π0γ)

    /Γtotal Γ2/ΓΓ(

    π0γ)

    /Γtotal Γ2/ΓΓ(

    π0γ)

    /Γtotal Γ2/Γ NODE=M001R28NODE=M001R28VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    8.09±0.14 32 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ9.06±0.20±0.57 18680 33,34 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ9.34±0.15±0.31 36500 34 ACHASOV 03 SND 0.60–0.97 e+ e− → π0 γ8.65±0.16±0.42 1.2M 35,36 ACHASOV 03D RVUE 0.44–2.00 e+ e− →

    π+π−π08.39±0.24 9975 37 BENAYOUN 96 RVUE e+ e− → π0 γ8.88±0.62 10625 34 DOLINSKY 89 ND e+ e− → π0 γ32Not independent of Γ(π0 γ) / Γ(π+π−π0) from AMBROSINO 08G. NODE=M001R28;LINKAGE=AM33Using B(ω → e+ e−)= (7.14 ± 0.13)× 10−5. NODE=M001R;LINKAGE=AH34Not independent of the corresponding Γ(e+ e−)× Γ(π0 γ)/Γ2

    total.

    NODE=M001R;LINKAGE=VL35Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%. NODE=M001R28;LINKAGE=VF36Not independent of the corresponding Γ(e+ e−)× Γ(π+π−π0)/Γ2

    total.

    NODE=M001R28;LINKAGE=ZL37Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into account the NODE=M001R28;LINKAGE=A1

    triangle anomaly contributions.

    Γ(

    π0γ)

    /Γ(

    π+π−π0)

    Γ2/Γ1Γ(

    π0γ)

    /Γ(

    π+π−π0)

    Γ2/Γ1Γ(

    π0γ)

    /Γ(

    π+π−π0)

    Γ2/Γ1Γ(

    π0γ)

    /Γ(

    π+π−π0)

    Γ2/Γ1 NODE=M001R3NODE=M001R3VALUE (units 10−2) DOCUMENT ID TECN COMMENT

    9.28±0.31 OUR FIT9.28±0.31 OUR FIT9.28±0.31 OUR FIT9.28±0.31 OUR FIT Error includes scale factor of 2.3.9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE Error includes scale factor of 1.8.8.97±0.16 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ9.94±0.36±0.38 38 AULCHENKO 00A SND e+ e− → π+π− 2π0, 2π0 γ8.4 ±1.3 KEYNE 76 CNTR π− p → ωn

    10.9 ±2.5 BENAKSAS 72C OSPK e+ e− → π0 γ8.1 ±2.0 BALDIN 71 HLBC 2.9 π+ p

    13 ±4 JACQUET 69B HLBC 2.05 π+ p → π+ pω• • • We do not use the following data for averages, fits, limits, etc. • • •

    9.7 ±0.2 ±0.5 39,40 ACHASOV 03D RVUE 0.44–2.00 e+ e− → π+π−π09.9 ±0.7 39 DOLINSKY 89 ND e+ e− → π0 γ

    38 From σωπ0 →π0π0 γ0

    (mφ)/σωπ0 →π+π−π0π00

    (mφ) with a phase-space correction NODE=M001R3;LINKAGE=ALfactor of 1/1.023.

    39Not independent of the corresponding Γ(e+ e−)× Γ(π0 γ)/Γ2total

    .NODE=M001R3;LINKAGE=VL

    40Using ACHASOV 03. Based on 1.2M events. NODE=M001R3;LINKAGE=VW

    Γ(

    π+π−)

    /Γtotal Γ3/ΓΓ(

    π+π−)

    /Γtotal Γ3/ΓΓ(

    π+π−)

    /Γtotal Γ3/ΓΓ(

    π+π−)

    /Γtotal Γ3/Γ NODE=M001R15See also Γ

    (

    π+π−)

    /Γ(

    π+π−π0)

    . NODE=M001R15NODE=M001R15VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

    1.53+0.11−0.13 OUR FIT1.53+0.11−0.13 OUR FIT1.53+0.11−0.13 OUR FIT1.53+0.11−0.13 OUR FIT Error includes scale factor of 1.2.

    1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.1.46±0.12±0.02 900k 41 AKHMETSHIN 07 e+ e− → π+π−1.30±0.24±0.05 11.2k 42 AKHMETSHIN 04 CMD2 e+ e− → π+π−

    2.38+1.77−0.90±0.18 5.4k43 ACHASOV 02E SND 1.1–1.38 e+ e− →

    π+π−π02.3 ±0.5 BARKOV 85 OLYA e+ e− → π+π−

    1.6 +0.9−0.7 QUENZER 78 DM1 e+ e− → π+π−

    3.6 ±1.9 BENAKSAS 72 OSPK e+ e− → π+π−• • • We do not use the following data for averages, fits, limits, etc. • • •

    1.75±0.11 4.5M 44 ACHASOV 05A SND e+ e− → π+π−2.01±0.29 45 BENAYOUN 03 RVUE e+ e− → π+π−1.9 ±0.3 46 GARDNER 99 RVUE e+ e− → π+π−2.3 ±0.4 47 BENAYOUN 98 RVUE e+ e− → π+π−, µ+µ−1.0 ±0.11 48 WICKLUND 78 ASPK 3,4,6 π±N1.22±0.30 ALVENSLEB... 71C CNTR Photoproduction

    1.3 +1.2−0.9 MOFFEIT 71 HBC 2.8,4.7 γ p

    0.80+0.28−0.2049 BIGGS 70B CNTR 4.2γC → π+π−C

  • 4/30/2010 19:56 Page 24

    41A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05. NODE=M001R15;LINKAGE=AK42Update of AKHMETSHIN 02. NODE=M001R15;LINKAGE=PT43From the m

    π+π− spectrum taking into account the interference of the ρπ and ωπ NODE=M001R;LINKAGE=VEamplitudes.

    44Using Γ(ω → e+ e−) from the 2004 Edition of this Review (PDG 04). NODE=M001R;LINKAGE=SN45Using the data of AKHMETSHIN 02 in the hidden local symmetry model. NODE=M001R;LINKAGE=BY46Using the data of BARKOV 85. NODE=M001R15;LINKAGE=H447Using the data of BARKOV 85 in the hidden local symmetry model. NODE=M001R15;LINKAGE=Q48From a model-dependent analysis assuming complete coherence. NODE=M001R15;LINKAGE=F49Re-evaluated under Γ

    (

    π+π−)

    /Γ(

    π+π−π0)

    by BEHREND 71 using more accurate ω→ NODE=M001R15;LINKAGE=Bρ photoproduction cross-section ratio.

    WEIGHTED AVERAGE1.49±0.13 (Error scaled by 1.3)

    Values above of weighted average, error,and scale factor are based upon the data inthis ideogram only. They are not neces-sarily the same as our ‘best’ values,obtained from a least-squares constrained fitutilizing measurements of other (related)quantities as additional information.

    BENAKSAS 72 OSPKQUENZER 78 DM1BARKOV 85 OLYA 2.6ACHASOV 02E SNDAKHMETSHIN 04 CMD2 0.6AKHMETSHIN 07 0.1

    χ2

    3.3(Confidence Level = 0.194)

    0 1 2 3 4 5

    Γ(

    π+π−)

    /Γtotal (units 10−2)

    Γ(

    π+π−)

    /Γ(

    π+π−π0)

    Γ3/Γ1Γ(

    π+π−)

    /Γ(

    π+π−π0)

    Γ3/Γ1Γ(

    π+π−)

    /Γ(

    π+π−π0)

    Γ3/Γ1Γ(

    π+π−)

    /Γ(

    π+π−π0)

    Γ3/Γ1 NODE=M001R2See also Γ

    (

    π+π−)

    /Γtotal. NODE=M001R2NODE=M001R2VALUE DOCUMENT ID TECN COMMENT

    0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT Error includes scale factor of 1.2.0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE

    0.021 +0.028−0.00950,51 RATCLIFF 72 ASPK 15 π− p → n2π

    0.028 ±0.006 50 BEHREND 71 ASPK Photoproduction

    0.022 +0.009−0.0152 ROOS 70 RVUE

    50The fitted width of these data is 160 MeV in agreement with present average, thus the NODE=M001R2;LINKAGE=Aω contribution is overestimated. Assuming ρ width 145 MeV.

    51 Significant interference effect observed. NB of ω → 3π comes from an extrapolation. NODE=M001R2;LINKAGE=S52ROOS 70 combines ABRAMOVICH 70 and BIZZARRI 70. NODE=M001R2;LINKAGE=R

    Γ(

    π+π−)

    /Γ(

    π0γ)

    Γ3/Γ2Γ(

    π+π−)

    /Γ(

    π0γ)

    Γ3/Γ2Γ(

    π+π−)

    /Γ(

    π0γ)

    Γ3/Γ2Γ(

    π+π−)

    /Γ(

    π0γ)

    Γ3/Γ2 NODE=M001R33NODE=M001R33VALUE EVTS DOCUMENT ID TECN COMMENT

    0.20±0.040.20±0.040.20±0.040.20±0.04 1.98M 53 ALOISIO 03 KLOE 1.02 e+ e− →π+π−π0

    53Using the data of ALOISIO 02D. NODE=M001R;LINKAGE=KL

    Γ(

    neutrals)

    /Γtotal (Γ2+Γ4)/ΓΓ(

    neutrals)

    /Γtotal (Γ2+Γ4)/ΓΓ(

    neutrals)

    /Γtotal (Γ2+Γ4)/ΓΓ(

    neutrals)

    /Γtotal (Γ2+Γ4)/Γ NODE=M001R14NODE=M001R14VALUE EVTS DOCUMENT ID TECN COMMENT

    0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.075±0.025 BIZZARRI 71 HBC 0.0 pp0.079±0.019 DEINET 69B OSPK 1.5 π− p0.084±0.015 BOLLINI 68C CNTR 2.1 π− p• • • We do not use the following data for averages, fits, limits, etc. • • •

    0.073±0.018 42 BASILE 72B CNTR 1.67 π− p

  • 4/30/2010 19:56 Page 25

    Γ(

    neutrals)

    /Γ(

    π+π−π0)

    (Γ2+Γ4)/Γ1Γ(

    neutrals)

    /Γ(

    π+π−π0)

    (Γ2+Γ4)/Γ1Γ(

    neutrals)

    /Γ(

    π+π−π0)

    (Γ2+Γ4)/Γ1Γ(

    neutrals)

    /Γ(

    π+π−π0)

    (Γ2+Γ4)/Γ1 NODE=M001R1NODE=M001R1VALUE EVTS DOCUMENT ID TECN COMMENT

    0.102±0.008 OUR FIT0.102±0.008 OUR FIT0.102±0.008 OUR FIT0.102±0.008 OUR FIT

    0.103+0.011−0.010 OUR AVERAGE0.103+0.011−0.010 OUR AVERAGE0.103+0.011−0.010 OUR AVERAGE0.103+0.011−0.010 OUR AVERAGE

    0.15 ±0.04 46 AGUILAR-... 72B HBC 3.9,4.6 K− p0.10 ±0.03 19 BARASH 67B HBC 0.0 pp0.134±0.026 850 DIGIUGNO 66B CNTR 1.4 π− p0.097±0.016 348 FLATTE 66 HBC 1.4 – 1.7 K− p → ΛMM

    0.06 +0.05−0.02 JAMES 66 HBC 2.1 π+ p

    0.08 ±0.03 35 KRAEMER 64 DBC 1.2 π+ d• • • We do not use the following data for averages, fits, limits, etc. • • •

    0.11 ±0.02 20 BUSCHBECK 63 HBC 1.5 K− p

    Γ(

    π0γ)

    /Γ(

    neutrals)

    Γ2/(Γ2+Γ4)Γ(

    π0γ)

    /Γ(

    neutrals)

    Γ2/(Γ2+Γ4)Γ(

    π0γ)

    /Γ(

    neutrals)

    Γ2/(Γ2+Γ4)Γ(

    π0γ)

    /Γ(

    neutrals)

    Γ2/(Γ2+Γ4) NODE=M001R18NODE=M001R18VALUE CL% DOCUMENT ID TECN COMMENT

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    0.78±0.07 54 DAKIN 72 OSPK 1.4 π− p → nMM>0.81 90 DEINET 69B OSPK

    54Error statistical only. Authors obtain good fit also assuming π0 γ as the only neutral NODE=M001R18;LINKAGE=Ddecay.

    Γ(

    neutrals)

    /Γ(

    charged particles)

    (Γ2+Γ4)/(Γ1+Γ3)Γ(

    neutrals)

    /Γ(

    charged particles)

    (Γ2+Γ4)/(Γ1+Γ3)Γ(

    neutrals)

    /Γ(

    charged particles)

    (Γ2+Γ4)/(Γ1+Γ3)Γ(

    neutrals)

    /Γ(

    charged particles)

    (Γ2+Γ4)/(Γ1+Γ3) NODE=M001R9NODE=M001R9VALUE DOCUMENT ID TECN COMMENT

    0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.124±0.0210.124±0.0210.124±0.0210.124±0.021 FELDMAN 67C OSPK 1.2 π− p

    Γ(

    ηγ)

    /Γtotal Γ5/ΓΓ(

    ηγ)

    /Γtotal Γ5/ΓΓ(

    ηγ)

    /Γtotal Γ5/ΓΓ(

    ηγ)

    /Γtotal Γ5/Γ NODE=M001R19NODE=M001R19VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

    4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT Error includes scale factor of 1.1.6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE Error includes scale factor of 1.2.6.6 ±1.7 55 ABELE 97E CBAR 0.0 pp → 5γ8.3 ±2.1 ALDE 93 GAM2 38π− p → ωn

    3.0 +2.5−1.856 ANDREWS 77 CNTR 6.7–10 γCu

    • • • We do not use the following data for averages, fits, limits, etc. • • •

    4.3 ±0.5 ±0.1 33k 57 ACHASOV 07B SND 0.6–1.38 e+ e− → ηγ

    4.44+2.59−1.83±0.28 17.4k58,59 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ

    5.10±0.72±0.34 23k 60 AKHMETSHIN 01B CMD2 e+ e− → ηγ0.7 to 5.5 61 CASE 00 CBAR 0.0 pp → ηηγ

    6.56+2.41−2.55 352556,62 BENAYOUN 96 RVUE e+ e− → ηγ

    7.3 ±2.9 56,58 DOLINSKY 89 ND e+ e− → ηγ55No flat ηηγ background assumed. NODE=M001R;LINKAGE=EA56Solution corresponding to constructive ω-ρ interference. NODE=M001R19;LINKAGE=A57ACHASOV 07B reports [Γ

    (

    ω(782) → ηγ)

    /Γtotal] × [B(ω(782) → e+ e−)] = NODE=M001R19;LINKAGE=AO

    (3.10 ± 0.31 ± 0.11)× 10−8 which we divide by our best value B(ω(782) → e+ e−)= (7.28 ± 0.14) × 10−5. Our first error is their experiment’s error and our seconderror is the systematic error from using our best value. Supersedes ACHASOV 00D andACHASOV 06A.

    58Not independent of the corresponding Γ(e+ e−)× Γ(ηγ)/Γ2total

    .NODE=M001R13;LINKAGE=WL

    59Using B(ω → e+ e−) = (7.14 ± 0.13)× 10−5 and B(η → γ γ) = 39.43 ± 0.26%. NODE=M001R19;LINKAGE=AK60Using B(ω → e+ e−)= (7.07 ± 0.19) × 10−5 and using B(η → 3π0)= (32.24 ± NODE=M001R19;LINKAGE=TS

    0.29) × 10−2. Solution corresponding to constructive ω-ρ interference. The combinedfit from 600 to 1380 MeV taking into account ρ(770), ω(782), φ(1020), and ρ(1450)(mass and width fixed at 1450 MeV and 310 MeV respectively). Not independent of the

    corresponding Γ(e+ e−)× Γ(ηγ)/Γ2total

    .

    61Depending on the degree of coherence with the flat ηηγ background and using B(ω → NODE=M001R;LINKAGE=CS