Light and Stars ASTR 2110 Sarazin - University of...

53
Light and Stars ASTR 2110 Sarazin

Transcript of Light and Stars ASTR 2110 Sarazin - University of...

  • Light and Stars
ASTR 2110


    Sarazin


  • Doppler Effect Frequency and wavelength of light

    changes if source or observer move

  • Doppler Effect

    vr ≡drdt≡ radial velocity

    > 0 moving apart < 0 moving toward

  • Doppler Effect

    λobs = λem + s = λem + vrPemPem =1/νem =1/(c /λem ) = λem /cRecall ν = c /λλobs ≈ λem 1+ vr /c( )νobs ≈ νem / 1+ vr /c( ) ≈ νem 1− vr /c( )approximate, assuming : v

  • Doppler Effect (Cont.)

    Time Dilation

    Δtobs = Δtem 1− v2 /c2

    for radial motion v = vr# of waves emitted = νΔtνobsΔtobs = νemΔtem

    νobs = νem 1− vr2 /c2 /(1+ vr /c)

    νobs = νem1− vr /c1+ vr /c

    λobs = λem1+ vr /c1− vr /c

  • Redshift

    z ≡ λobs −λemλem

    redshift

    z ≈ vr /c for v 0 moving apart (redshift) < 0 moving toward (blueshift)

  • Doppler Effect - Summary

    vr ≡drdt≡ radial velocity

    for radial motion

    νobs = νem1− vr /c1+ vr /c

    λobs = λem1+ vr /c1− vr /c

    for v

  • Observed Properties of Stars
ASTR 2110


    Sarazin

  • Extrinsic Properties

    Location Motion

    “kinematics”

  • Extrinsic Properties

    Location Use spherical coordinate system centered on Solar System

    Two angles (θ,φ) Right Ascension (α = RA) Declination (δ = Dec)

    easy to measure accurately

  • Extrinsic Properties Location

    Use spherical coordinate system (r,θ,φ) centered on Solar System

    Two angles (θ,φ) Right Ascension (α = RA) Declination (δ = Dec)

    Radius r = distance d Very hard to measure

  • Distances
Key Measurement Problem


    Celestial Sphere Astronomical objects are so far away, we

    have no ability to judge depth Stars which appear close on the sky can

    be very far apart

  • Distances - Parallax Earth travels around Sun è we view stars

    from different angles The stars will appear to shift back and

    forth every year

  • Parallax

    π

  • Parallax

    Earth travels around Sun è we view stars from different angles

    The stars will appear to shift back and forth every year

    Effect decreases with increasing distance

  • sinπ (rad) = AUd

    , π (rad)

  • Parsec

    Basic unit of distance in astronomy parsec = 2.06 x 105 AU = 3.09 x 1018 cm = 3.26 light years AU = 1.50 x 1013 cm

    Memorize

  • Parallax

    Example: Nearest star Proxima Centauri d = 1.3 pc è π = 0.77 arcsec

    Spatial resolution of telescopes, “seeing” ≈ 1 arcsec

    So, very hard to center images < 0.01’’ Can only determine parallax, distance for

    relatively nearby stars, d

  • Extrinsic Properties Location Motion

    Separate into two components vr = radial velocity

    changes distance vt = tangential velocity

    changes angle

    vr

    v vt

  • Radial Velocity, Doppler Shift vr > 0 è distance increases Measured by Doppler Shift z ≡λobs −λemλem

    redshift or Doppler shift

    z > 0→moving awayfor v

  • Tangential Velocity
Proper Motion

    vt è RA, Dec (angles) change

    tanΔθ = s / d = vt Δtd

    d

    s = vt Δt Δθ

  • Tangential Velocity:
Proper Motion

    tanΔθ = s / d = vt Δtd

    , Δθ

  • Parallax + Proper Motion vorb (Earth) = 30 km/s v (nearby stars) ~

    20 km/s Proper motion (1 year)

    ~ parallax Parallax, periodic 1

    year, east-west Proper motion

    continuous

    μ

    π

  • Distance Dependence

    Doppler shift: z = vr / c Independent of distance!! Can do across whole Universe

    Proper motion, parallax π = 1 / dpc , μ = vt / d, both ~ 1 / d

    Can only easily detect for nearby stars, < 100 pc, from Earth

  • Intrinsic Properties of Stars

  • Luminosity and Flux L = luminosity = energy / time from star

    (erg/s) “Brightness” = flux F = energy / area / time

    at Earth (erg/cm2/s)

    “inverse square law”

    F = L4πd 2

    L = 4πd 2F

  • Magnitudes

    Hipparchus 1)  Classified stars by

    brightness, brighter = 1st magnitude, … 6th magnitude

    2)  Used eyes, human senses logarithmic

    Magnitudes è go backwards, logarithmic

  • Magnitudes

    Write as 1 .m

    3 or 1.3 mag5 mag = factor of 100 fainter2.5 mag = factor of 10 fainter (1 order of magnitude)Two stars, fluxes F1, F2F1 / F2 =10

    −(m1−m2 )/2.5 =10−0.4(m1−m2 )

    m1 −m2 = −2.5log(F1 / F2 )(log ≡ log10 , ln ≡ loge )

  • Examples - 1 Two stars, a is twice as bright as bmb =10 mag. What is ma ?Fa / Fb = 2ma −mb = −2.5log(Fa / Fb ) = −2.5log(2)

    = −2.5•0.3= −0.75ma =mb − 0.75=10− 0.75= 9.25 mag

  • Examples - 2

    Sirius is -1.5 mag, Castor is 1.6 mag. Which isbrighter, and by what factor?Brighter → smaller mag → SiriusΔm = −3.1FS / FC =10

    −0.4•Δm =10−0.4•(−3.1) =101.24 =17

  • Magnitudes

  • Stellar Colors

  • Stellar Colors

  • Stellar Colors

    Stars vary in color: Betalgeuse red, Sun yellow, Vega blue-white

    Use filters to get flux in one color, compare

  • Color Filters for Observing

  • Stellar Colors

    Stars vary in color: Use filters to get flux in one color,

    compare Fluxes: FU, FB, FV, … Magnitudes: mU = U, mB = B, mV = V, …

  • Stellar Colors

    Color index, or just “color” CI = B – V, …

    Note: Given B – V è fixed FB / FV Just measures shape of spectrum, not

    total flux Independent of distance

    Just gives color

  • Temperature & Color

    Color mainly determined by temperature of stellar surface

    Stellar spectra ~ black body λmax ≈ 0.3 cm / T (Wiens Law) Higher T è shorter λ è bluer light Hot stars blue, B – V negative Cool stars red, B – V positive

  • Temperature & Color

    Color mainly determined by temperature of stellar surface

    Stellar spectra ~ black body λmax ≈ 0.3 cm / T (Wiens Law) Higher T è shorter λ è bluer light Hot stars blue, B – V negative Cool stars red, B – V positive

    Solar spectrum vs. BB

  • Temperature & Color

    Color mainly determined by temperature of stellar surface

    Stellar spectra ~ black body λmax ≈ 0.3 cm / T (Wiens Law) Higher T è shorter λ è bluer light Hot stars blue, B – V negative Cool stars red, B – V positive

    Solar spectrum vs. BB

  • Stellar Temperatures

    Range from T ≈ 3000 K to 100,000 K (brown dwarfs, planets cooler; some

    stellar corpses hotter)

  • Stellar Temperatures

  • Bolometric Magnitude

    Hard to measure all light from star, but

    Bolometric magnitude è magnitude based on total flux

    mbol

  • Luminosity &
Absolute Magnitude

    Absolute magnitude M = magnitude if star moved to d = 10 pc

    F = L4πd 2

    L = 4πd 2F

    F = L4πd 2

    FF10

    =10dpc

    !

    "##

    $

    %&&

    2

  • Luminosity &
Absolute Magnitude

    F = L4πd 2

    FF10

    =10dpc

    !

    "##

    $

    %&&

    2

    m−M = −2.5log 10dpc

    !

    "##

    $

    %&&

    2(

    )

    **

    +

    ,

    --= −5log 10 / dpc( )

    m−M = 5logdpc − 5≡ distance modulus

  • Luminosity &
Absolute Magnitude

    m−M = 5logdpc − 5≡ distance modulusM =m− 5logdpc + 5

    =m+ 5log ##π + 5

  • Luminosity &
Absolute Magnitude

    From distance to Sun (AU) and flux Mbol(¤) = +4.74 L = 3.845 x 1033 erg/s = 3.845 x 1026 J/s = W Mbol = 4.74 − 2.5 log(L/L ) Note: ¤= astronomical symbol for Sun

    ¤

    ¤

    Memorize

  • Stellar Luminosities

    Very wide range 10-4 L ≤ L ≤ 106 L

    ¤ ¤

  • Basic Numbers of Astronomy

    Memorize

  • Stellar Radii For BB, L = (area) σ T4 = 4π R2 σ T4 σ = 5.67 x 10-5 erg/cm2/s/K4 Stefan-Boltzmann constant

    Define effective temperature Teff such that L = 4π R2 σ Teff4

    If BB, then T = Teff

  • Stellar Radii Measure flux F, distance d è L Measure color èTeff (estimate) Solve for radius R

  • Stellar Radii Find mainly three sets of radii Normal Stars: “main sequence”, “dwarfs” 0.1 R < R < 20 R sequence: small, cool, faint è big, hot, bright

    Giants: R > 100 R ~ AU cool, T ~ 3000 K

    White Dwarfs: R ≈ 0.01 ~ R(Earth)

    ¤ ¤

    ¤

    R ¤