Lesson 2: Diffractometers and Phase...

44
Lesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation, Bettlach, Switzerland October 16 – 17, 2013, Uppsala, Sweden

Transcript of Lesson 2: Diffractometers and Phase...

Page 1: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Lesson 2Diffractometers &

Phase Identification

Nicola DöbelinRMS Foundation, Bettlach, Switzerland

October 16 – 17, 2013, Uppsala, Sweden

Page 2: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Repetition: Generation of X-rays / Diffraction

2

Characteristic X-radiation

Anode

Target Sample

SEM: BSE detector, BSED / SAED detector

SEM: SE detector

SEM: EDX detectorEMPA: EDX / WDX

XRF

XPS

XRD (WAXS)SAXS, XRR

Absorption:XAS, EXAFS, XANES

Page 3: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

3

Repetition: Generation of X-rays

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Cu

Kα1

Kα2

Cu Radiation

Ni filter

Ni-filtered Radiation

Graphite Monochromator

CuKα1/2Radiation

Cu Radiation Digital filtering

Page 4: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Repetition: Powder Diffraction

4

n · λ = 2 · d · sin(θ)

d

λ

θθ 2θ

(120)

(100)

(010)

Powder sample

Page 5: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Repetition: Powder Diffractometer

5

X-ray tube

Primary Beam

PowderSample

Diffraction Cones«Secondary Beams»

X-ray Detectorscanning X-ray intensity

vs. 2θ angle

Page 6: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Analogue Cameras

6

http://adias-uae.com

Debye-Scherrer Camera:

Powder in Glass Capillary

Diffraction pattern recordedon photographic film

2θ angle

Various alternative setups:

Gandolfi …

Guinier …

Straumanis …

Bradley …

Seemann-Bohlin …

…Camera

Page 7: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Digital Diffractometer

7

Debye-Scherrer Configuration

Transmission Geometry

Glass Capillary

FoilFluid Cell

Capillaries are ideal for:

• Light atoms (Polymers, Pharmaceuticals)

• Small amounts

• Hazardous materials

• Air-sensitive materials

Page 8: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Bragg-Brentano Diffractometer

8

Flat powder sample

Bragg-Brentano Configuration

Reflective Geometry

Reflective Geometry is ideal for:

• Absorbing materials (Ceramics, Metals)

• Thin films

• Texture analysis

Page 9: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Instruments

9

Lab Instrument Monochromator Configuration

Uppsala Uni Bruker D8 Ni-Filter Bragg-Brentano

(Reflection)

RMS (Uni Bern) Panalytical X’Pert Ni-Filter Bragg-Brentano

(Reflection)

RMS (Uni Bern) Panalytical CubiX Graphite

Monochromator

Bragg-Brentano

(Reflection)

Bruker D8 Panalytical X’Pert Panalytical CubiX

Page 10: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Bragg-Brentano Diffractometer

10

Flat powder sample

More optical elements are requiredto control the beam pattern.

X-ray tube

Detector

Kβ filter

Page 11: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Beam Divergence

11

Angle of Divergence Point focus

Line Focus

Sample holderSample holder

Sample surfaceSample surfaceIrradiated areaIrradiated area

Primarybeam

Primarybeam

Sample holder

Sample surfaceIrradiated area

Primarybeam

Page 12: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Beam Divergence

12

Limiting vertical divergencewith a «divergence slit» (DS)

Limiting horizontal divergencewith a «Collimator»

Collimator for Line focus= «Soller Slits» (SS):

Non-parallel rays areblocked by lamellae

Beam Mask:Limits the beam width

Page 13: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Beam Divergence

13

Divergence Slit

Soller Slit

Beam Masks

Page 14: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Bragg-Brentano Parafocusing Diffractometer

14

Sample

X-raytube

Detector

Goniometercircle

Divergenceslit

Sollerslit

Sollerslit

Anti-Scatterslit

Beammask

Anti-Scatterslit

Receivingslit

Focusingcircle

Kβ Filter

Typical Configuration(with Kβ filter)

Page 15: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Bragg-Brentano Parafocusing Diffractometer

15

Sample

Detector

Sollerslit Anti-Scatter

slit

Receivingslit

Secondarymonochromator

Typical Configuration(with secondary monochromator)

Modern instruments are modular.

Configuration can be changed easily.

PANalytical: «PreFIX»

Bruker: «SNAP-LOCK»

Page 16: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Example: PANalytical X’Pert Pro MPD

16

Tube

Soller Slits

ProgrammableDivergence Slit

Beam Mask

Sample Stage«Spinner»

Anti-ScatterSlit

ProgrammableAnti-Scatter Slit

Soller Slit

Ni-Filter

Detector

Page 17: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Optimum Settings: Divergence Slit

17

80° 2θ

20° 2θ

20° 2θ

Wide divergence slit:Beam spills over sample at low 2θ angles.

Use narrower divergence slit.

Page 18: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Optimum Settings: Divergence Slit

18

20° 2θ 80° 2θ

Low incident angle:

- Low penetration depth

- Large illuminated area

High incident angle:

- Deep penetration depth

- Small illuminated area

Fixed divergence slit:

Irradiated Volumeis constant

Constant intensity ofdiffraction pattern

20° 2θ

Low incident angle:

- Narrow divergence slit

- Low penetration depth

Variable divergence slit:

80° 2θ

High incident angle:

- Wide divergence slit

- Deep penetration depth

Irradiated Areais constant

Higher diffracted intensityat high 2θ angle

Page 19: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Fixed vs. Variable Divergence Slit

19

20 30 40 50 60 70 80 90

Inte

nsity

[a.u

.]

Diffraction Angle [°2θ]

fixed

variable

More than 2x higherintensity at 90° 2θwith variable DS

Page 20: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Optimum Settings: Divergence Slit

20

Sample holder

Sample surface

Recommendation:

- Set divergence slit to «variable»

- Adjust «irradiated length» and beam maskfor maximum illumination

- But avoid beam spill-over!

Irradiated area

Primarybeam

Correct! Wrong! Wrong!Reduce «irradiated length»

of divergence slitUse a smaller Beam Mask

Page 21: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Optimum Settings: Divergence Slit

21

Using sample holders of various sizes?

Match your Divergence Slit and Beam Mask!

Or else: Waste of intensity Beam spill-overor

Page 22: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Variable Divergence Slit: Irradiated Length

22

30.2 30.3 30.4 30.5 30.6 30.70

500

1000

1500

2000

2500

3000In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

5mm 10mm 15mm

Soller Slits: 0.02 rad

Beam Mask: 10mm

Page 23: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Variable Divergence Slit: Irradiated Length

23

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

5mm 10mm 15mm

Soller Slits: 0.02 rad

Beam Mask: 10mm

Page 24: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Beam Mask

24

30.2 30.3 30.4 30.5 30.6 30.70

500

1000

1500

2000

2500

3000

3500In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

5mm 10mm 20mm

Soller Slits: 0.02 rad

Irradiated Length: 10mm

Page 25: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Beam Mask

25

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

5mm 10mm 20mm

Soller Slits: 0.02 rad

Irradiated Length: 10mm

Page 26: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Soller Slits

26

30.2 30.3 30.4 30.5 30.6 30.70

1000

2000

3000

4000

5000

6000

7000In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

0.02rad 0.04rad

Beam Mask: 10mm

Irradiated Length: 10mm

Page 27: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Soller Slits

27

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

0.02rad 0.04rad

Beam Mask: 10mm

Irradiated Length: 10mm

Affects resolution atlow 2θ angles

(effect is less pronouncedat high 2θ angles)

Page 28: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Receiving Slit

28

Strongly affects theresolution.

(Not all instrumentshave a receiving slit)

29.5 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.40

20

40

60

80

100In

tens

ity [%

]

Angle [°2theta]

0.1mm 0.3mm 0.5mm

Simulated with BGMN

Page 29: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Summary: Optical Elements

29

Optical Element Effect Too Small Too Large

Divergence Slit Adjusts beam length

on the sample

Loss of intensity Beam spills over

sample

Soller Slit Reduces peak

asymmetry

Loss of intensity,

Better resolution

More asymmetry,

Less resolution

Anti-Scatter Slit Reduces background

signal

Loss of intensity High background

Beam Mask Adjusts beam width

on the sample

Loss of intensity Beam spills over

sample

Receiving Slit Adjusts peak width /

resolution

Loss of intensity

Better resolution

Loss of resolution

Higher intensity

Kβ Filter Reduces Kβ peaks - -

Graphite

Monochromator

Eliminates Kβ peaks - -

Page 30: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Detectors

30

Detector’swindow

Receivingslit

Point Detector (0D) Linear Detector (1D) Area Detector (2D)

Receiving slitdetermines

active height

Linear array ofsolid statedetectors

2D array ofsolid statedetectors

Scintillation counter (various)

SOL-XE (Bruker)

XFlash (Bruker)

X’Celerator (PANalytical)

PIXcel1D (PANalytical)

LynxEye (Bruker)

LynxEye XE (Bruker)

Våntec-1 (Bruker)

D/teX Ultra (Rigaku)

PIXcel3D (PANalytical)

Våntec-500 (Bruker)

SOL-XE: Energy dispersive

XFlash: Combines XRD + XRF

Fast

Can be set to«0D mode»

2D image ofDebye rings

Can be set to «1D»and «0D» mode

DetectorType

Example

KeyFeatures

Position-sensitive«bins»

Page 31: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Instruments

31

Lab Instrument Monochr. Detector

Uppsala Uni Bruker D8 Ni-Filter 1D LynxEye

RMS (Uni Bern) Panalytical X’Pert Ni-Filter 1D X’Celerator

RMS (Uni Bern) Panalytical CubiX Graphite 0D Scintillation

Counter

Bruker D8 Panalytical X’Pert Panalytical CubiX

Page 32: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Phase Identification

32

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

A crystal structure will generatea characteristic XRD pattern.

Feature Origin

Peak positions - Symmetry of the unit

cell (space group)

- Dimensions of the

unit cell

Relative peak intensities - Coordinates of atoms

in unit cell

- Species of atoms

Absolute peak intensities - Abundance of phase

- Primary beam

intensity

Peak width - Crystallite size

- Stress/Strain in crystal

lattice

Usually sufficient for identification

Page 33: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Phase Identification

33

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

1. Extract peak positions

Page 34: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Phase Identification

34

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

Sample

Corundum

Fluorite

1. Extract peak positions

2. Compare withdata base

Page 35: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

35

Page 36: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Databases

36

Database Publisher # of Entries Data sets

PDF-2 ICDD(http://www.icdd.com)

250’182 All

PDF-4+ ICDD(http://www.icdd.com)

328’660 Inorganic

PDF-4/Minerals ICDD(http://www.icdd.com)

39’410 Minerals(Subset of PDF-4+)

PDF-4/Organics ICDD(http://www.icdd.com)

471’257 Organics

COD CODhttp://www.crystallography.net

215’708 All(excl. biopolymers)

Databases containing powder diffraction data (line positions)

Commercial

Open Access

Page 37: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Programmes for Search / Match

37

Programme Publisher Supported Databases*

HighScore PANalytical PDF-2/4

COD

EVA Search/Match Bruker PDF-2/4

PDXL2 Rigaku PDF-2

COD

RayfleX GE PDF-2/4

Sleve ICDD PDF-2/4

Match! Crystal Impact PDF-2/4

COD

CSM Oxford Cryosystems PDF-2/4

Jade MDI PDF-2/4

+ many more(see http://www.ccp14.ac.uk/solution/search-match.htm)

*incomprehensive

Page 38: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Search / Match: Restrictions

38

By chemical Composition By Subfile

Page 39: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Summary: Phase Identification I

39

- Phases are identified from XRD patterns by comparing peakpositions with database entries

- Search/Match software & database are required

- Various commercial / open programmes and databases

- Qualitative (sometimes semi-quantitative) results are obtained

- Phase identification is independent of Rietveld refinement(must be done before)

Page 40: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Question I: Polytypes

40

Is powder XRD the ideal tool to distinguishand identify the following phases?

Phase Composition Space Group

Calcite CaCO3 R-3c

Magnesite MgCO3 R-3c

Siderite FeCO3 R-3c

Structurally very similar (polytypes)

They generate similar diffraction patterns

XRD provides no direct information on Ca/Mg/Fe content

Only changes in unit cell dimensions.

Page 41: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Question I: Polytypes

41

- Similar diffraction patterns(mostly peak shifts)

- Some information on Mg/Ca/Fecontens from unit celldimensions

Solution:Combine XRD with chemicalanalysis (ICP, XRF, EDX, XPS…)

Calcite CaCO3

Magnesite MgCO3

Siderite FeCO3

Page 42: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Question II: Polymorphs

42

Is powder XRD the ideal tool to distinguishand identify the following phases?

Phase Composition Space Group

Calcite CaCO3 R-3c

Vaterite CaCO3 P63/mmc

Aragonite CaCO3 Pnam

Structurally different (polymorphs)

Chemical analyses not able to distinguish (chem. identical)

XRD can easily distinguish

Page 43: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Question II: Polymorphs

43

Calcite CaCO3

Aragonite CaCO3

Vaterite CaCO3

- Strongly different diffractionpatterns.

- Easily identified by XRD

Page 44: Lesson 2: Diffractometers and Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lesson-2-Diffracto... · Diffraction Cones «Secondary Beams» X-ray Detector scanning

Summary: Phase identification II

44

- XRD is mostly sensitive to structural differences

- Only little information on chemical differences

- Chemical analyses (XRF, ICP, EDX,…) providecomplementary information

- Sometimes additional chemical information can be veryhelpful for phase identification (� restrictions)

- For a comprehensive material characterization, combineXRD with chemical analysis