LEED: Surface of Si Si(111) Si(100) · Estimation of the temperature needed (e.g. 23 Na) : 3...

7
Wave-particle dualism: Wave-character of particles LEED: Surface of Si Si(100) Si(111)

Transcript of LEED: Surface of Si Si(111) Si(100) · Estimation of the temperature needed (e.g. 23 Na) : 3...

Wave-particle dualism: Wave-character of particles

LEED: Surface of Si

Si(100)Si(111)

Wave-particle dualism: Wave-character of particles

LEED: Electron Energy and LEED Pattern of ZnO[1120]

Ekin=63.9eV

λλλλdeBroglie=1.5ÅEkin=132.1eV

λλλλdeBroglie=1.1Å

Wave-particle dualism: Wave-character of particles

LEED: Reconstruction of the Surface

Si[100] - unreconstructed Si[100] - reconstructed

Wave-particle dualism: Wave-character of particles

LEED: Reconstruction of the Surface Si[111] - H-terminated

Si[111] - 7x7 reconstructed

Wave-particle dualism: Wave-character of particles

LEED: Facets on ZnO@SiC

Estimation of the temperature needed (e.g. 23Na) :

� 3 orthogonal pairs of Lasers in opposite direction

⇒ Pressure by radiation

� Wave length of the Lasers is slightly lower than

the resonance line of the atom ⇒ Doppler effect

⇒ only out-moving atoms can absorb the Laser

light

� Therefore atoms will be decelerated

� Emission of the absorbed light is isotrop ⇒ no

resulting impulse onto the atom

� Superposition of magnetic field ⇒ increases

the capture time

� But: End temperature only 24µK !

���� Atoms : The Bose-Einstein Condensation

Wave-particle dualism: Wave-character of particles

Fourier-Transformation

∫∞

−⋅=0

)()(),( ωωξ ωdeAzt

kzti

Fourier-Transformation:

∫∞

−⋅=0

)(),(1

)( dteztAkzti ωξ

πω

Inverse Fourier-Transf.:

)sin()cos()(

kztikztkzti

e −⋅+−=−

ωωω

Komplexe Exponential-Funktion:

Heisenberg’s Uncertainty Relation